Key Technology of Explosion Prevention in Air Injection EOR Process

2013 ◽  
Vol 827 ◽  
pp. 118-124
Author(s):  
Feng Wang

The article aims at researching on anti-explosion security technique for gas-injection well of air oil drive through the gas associated with crude oil alerting system, and then, making sure safety distance of associated gas explosion. Firstly, experiment the explosion limit of associated gas, then to determine the different alerting threshold and the arrangement of inspection instrument, which are on the basic of different limit requirements of density about gas-injection well head and internal gas-injection well. Secondly, with associated gas explosion in the well, calculate the overpressure of well head through simulation method. Finally, analogy between explosion energy and TNT equivalent, so that determine the level of people casualties and structure breakage for safe distance according to failure criteria of explosive blast.

2014 ◽  
Vol 1051 ◽  
pp. 962-966 ◽  
Author(s):  
Qian Huang ◽  
Zhen Yi Liu ◽  
Zhe Zuo

In this paper, blast effect of oil-associated gas in gas injection wells is determined when using air injection displacement, and on this basis, the relevant safety distance is determined also. Numerical simulation is used to calculate the overpressure distribution, explosion energy and TNT equivalence of combustible gas explosion in gas injection wells. Based on shock wave damage criterion, the safety distances in seven levels are obtained, which are personnel minor injuries, severe injuries, death, and destruction of buildings with mild, moderate, severe manage and destroying. Therefore, technical support is provided to accident prevention, emergency and rescue.


2013 ◽  
Vol 554-557 ◽  
pp. 423-432 ◽  
Author(s):  
Patrick Böhler ◽  
Frank Härtel ◽  
Peter Middendorf

In several fields of engineering the use of carbon fibre reinforced material (CFRP) is increasing. Minimized weight due to CFRPs could lead to lower consumption of raw materials especially in the automotive area. The goal within the research project TC² is the decrease of costs and production time for composite materials. To achieve better performance to weight ratio and to get acceptable production conditions the draping of dry unidirectional textiles and a following RTM process is investigated. Due to the high degree of complexity of automotive structures the forming process is challenging. Gapping in the textile could appear at corners as well as wrinkling or flexion of the fibres. To be able to define the amount and direction of layers or patches it is necessary to know the limits of forming for unidirectional material and to be able to predict the behaviour of the textile during the forming process. For the definition of the process limits several draping strategies are performed on different corner blend geometries. The goal of that work is to define the critical gradient of the flange to get first failures such as wrinkling or gapping. It is also important to understand the influence of different draping strategies. Parallel to the experimental tests a mesoscopic simulation method using an approach with roving and sewing thread is developed and presented. It is able to predict the material behaviour in critical areas (gapping, wrinkling). Different Young’s moduli and failure criteria can be implemented for the two main directions as well as for the bending of the textile. A validation with the experimental results is performed with the aim to enable the prediction of the textile behaviour using simulation methods.


2018 ◽  
Vol 18 (5) ◽  
pp. 1269-1277
Author(s):  
Yan Long ◽  
Mifeng Zhao ◽  
Junfeng Xie ◽  
Anqing Fu ◽  
Zhenquan Bai

2021 ◽  
Vol 61 (2) ◽  
pp. 530
Author(s):  
Paul Barraclough ◽  
Mohamad Bagheri ◽  
Charles Jenkins ◽  
Roman Pevzner ◽  
Simon Hann ◽  
...  

In 2015, CO2CRC Ltd embarked on an ambitious plan to field test innovative technologies to monitor a CO2 plume injected into a saline aquifer with a view to address many of the economic and environmental concerns frequently associated with commercial carbon capture and storage project’s long-term monitoring programs (Jenkins et al. 2017). It was called the Otway Stage 3 Project and it was focused on testing the technologies of seismic and downhole pressures applied in unique ways to monitor an injected plume of approximately 15000 tonnes as it developed and migrated in the subsurface. To achieve this goal, five new wells were drilled at CO2CRC’s Otway International Test Centre – one dedicated to injection (drilled in 2017) and the remaining four wells (drilled in 2019) were used for monitoring purposes. Each monitoring well and the gas injection well, were outfitted with fibre optic systems installed and cemented outside the casing (specifically for seismic monitoring) and with pressure gauges installed at the reservoir depth. The challenge of the installation was to install fibre optics outside of the casing, cement them in place securely and to perforate the wells without damaging the fragile TEF bundles. While the installation of the pressure gauges in the injection well was a conventional in-tubing gauge mandrel, the installation in the monitoring wells, which were to be used for water injection as well as pressure monitoring, used a less conventional deployment method, where the gauges were instead installed using a more economic and flexible approach by suspending the gauges from the wellhead via a hanger system. This not only ensured continuous offline monitoring of the downhole well pressures and temperatures, but also facilitated future well operations by simple wireline retrieval and deployment of the gauge, forgoing the need for a workover rig. The various systems were commissioned over the period of March–June 2020 and were in full operation in the second half of 2020 – all successfully operating and acquiring baseline data remotely as designed. The Stage 3 Project commenced gas injection operations in December 2020 and data acquisition using the innovative systems have commenced successfully.


1984 ◽  
Vol 24 (1) ◽  
pp. 278
Author(s):  
H. T. Pecanek ◽  
I. M. Paton

The Tirrawarra Oil and Gas Field, discovered in 1970 in the South Australian portion of the Cooper Basin, is the largest onshore Permian oil field in Australia. Development began in 1981 as part of the $1400 million Cooper Basin Liquids ProjectThe field is contained within a broad anticline bisected by a north-south sealing normal fault. This fault divides the Tirrawarra oil reservoir into the Western and Main oil fields. Thirty-four wells have been drilled, intersecting ten Patchawarra Formation sandstone gas reservoirs and the Tirrawarra Sandstone oil reservoir. Development drilling discovered three further sandstone gas reservoirs in the Toolachee Formation.The development plan was based on a seven-spot pattern to allow for enhanced oil recovery by miscible gas drive. The target rates were 5400 barrels of oil (860 kilolitres) per day with 13 million ft3 (0.37 million m3) per day of associated gas and 70 million ft3 (2 million m') per day of wet, non-associated gas. Evaluation of early production tests showed rapid decline. The 100 ft (30 m) thick, low-permeability Tirrawarra oil reservoir was interpreted as an ideal reservoir for fracture treatment and as a result all oil wells have been successfully stimulated, with significant improvement in well production rates.The oil is highly volatile but miscibility with carbon dioxide has been proven possible by laboratory tests, even though the reservoir temperature is 285°F (140°C). Pilot gas injection will assess the feasibility of a larger-scale field-wide pressure maintenance scheme using miscible gas. Riot gas injection wells will use Tirrawarra Field Patchawarra Formation separator gas to defer higher infrastructure costs associated with the alternative option of piping carbon dioxide from Moomba, the nearest source.


Author(s):  
Erhui Luo ◽  
Zifei Fan ◽  
Yongle Hu ◽  
Lun Zhao ◽  
Jianjun Wang

Produced gas containing the acid gas reinjection is one of the effective enhanced oil recovery methods, not only saving costs of disposing acid gases and zero discharge of greenhouse gases but also supporting reservoir pressure. The subsurface fluid from the Carboniferous carbonate reservoir in the southern margin of the Pre-Caspian basin in Central Asia has low density, low viscosity, high concentrations of H2S (15%) and CO2 (4%), high solution gas/oil ratio. The reservoir is lack of fresh water because of being far away onshore. Pilot test has already been implemented for the acid gas reinjection. Firstly, in our work a scheme of crude oil composition grouping with 15 compositions was presented on the basis of bottomhole sampling from DSTs of four wells. After matching PVT physical experiments including viscosity, density and gas/oil ratio and pressure–temperature (P–T) phase diagram by tuning critical properties of highly uncertain heavy components, the compositional model with phase behavior was built under meeting accuracy of phase fitting, which was used to evaluate mechanism of miscibility development in the acid gas injection process. Then using a cell-to-cell simulation method, vaporizing and/or condensing gas drive mechanisms were investigated for mixtures consisting of various proportions of CH4, CO2 and H2S in the gas injection process. Moreover, effects of gas compositions on miscible mechanisms have also been determined. With the aid of pressure-composition diagrams and pseudoternary diagrams generated from the Equation of State (EoS), pressures of First Contact Miscibility (FCM) and Multiple Contact Miscibility (MCM) for various gases mixing with the reservoir oil sample under reservoir temperature were calculated. Simulation results show that pressures of FCM are higher than those of MCM, and CO2 and H2S are able to reduce the miscible pressure. At the same time, H2S is stronger. As the CH4 content increases, both pressures of FCM and MCM are higher. But incremental values of MCM decrease. In addition, calculated envelopes of pseudoternary diagrams for mixtures of CH4, CO2 and H2S gases of varying composition with acid gas injection have features of bell shape, hourglass shape and triangle shape, which can be used to identify vaporizing and/or condensing gas drives. Finally, comparison of the real produced gas and the one deprived of its C3+ was performed to determine types of miscibility and calculate pressures of FCM and MCM. This study provides a theoretical guideline for selection of injection gas to improve miscibility and oil recovery.


2010 ◽  
Author(s):  
Raymond A. Mireault ◽  
Rudi Stocker ◽  
David William Dunn ◽  
Mehran Pooladi-Darvish

2020 ◽  
Vol 6 (4) ◽  
Author(s):  
Jason J. Song ◽  
Paul K. Chan ◽  
Hugues W. Bonin ◽  
Mahesh Pandey

Abstract A novel method of assessing the reliability of 37-element Canada deuterium uranium (reactor) (CANDU) fuel bundle was explored. The method implements a “best-estimate plus uncertainty” (BEPU) approach where a probabilistic treatment of manufacturing and operating inputs is used to predict fuel performance. The fuel performance was predicted using the Canadian industry standard codes for fuel performance, ELESTRESS and ELOCA, which, respectively, model fuel behaviors during normal and transient conditions. The outputs of the codes were compared against failure criteria from industry norms to determine the probability of failure. A Monte Carlo simulation method was applied to analyze this problem. Probability distributions of manufacturing input variables were estimated from real data, which were then randomly sampled. The inputs for fuel burnup and power were simulated using core-following data generated using a three-dimensional diffusion code, the Reactor Fuelling Simulation Program (RFSP), which were also then randomly sampled. The results of the simulations predict significant improvements in margins to limits for all performance parameters. An average improvement of 500 °C in centerline temperature, 10 °C in sheath temperature, 12 MPa in element internal pressure, and 0.8% in pellet end sheath hoop strain was predicted for the highest-powered region of the core, during normal operations, in comparison with the limit-of-envelope (LOE) benchmark. An 80% reactor overhead break (ROH) transient simulation was also simulated, and an average improvement of 500 °C in centerline temperature, 150 °C in sheath temperature, 6.5 MPa in internal pressure, and 2% in sheath hoop strain was predicted.


2021 ◽  
Vol 39 (6) ◽  
pp. 443-454
Author(s):  
Ping-Jung Li ◽  
Chao-Shi Chen ◽  
Cheng-Yu Weng ◽  
Hsin-Hsiu Ho

This article discusses the overpressure of a gas explosion and the performance of applying water mist for explosion suppression. According to the experimental results, the larger the opening area, the more difficult it is for pressure to accumulate, resulting in lower overpressure of a gas explosion. When the opening was opened under a high air speed environment, the amount of entrained air was greater. Consequently, the occurrence time of the explosion was shorter than at a low air speed. Despite the water mist nozzle being installed outside the enclosure, a propane gas explosion still occurred regardless of the amount of water mist used, failing to suppress the explosion. However, the water mist nozzle installed inside the enclosure supplied an adequate amount of water mist that could wash a part of the propane, resulting in the fuel concentration dropping below the lower explosion limit, hindering the occurrence of an explosion.


Author(s):  
R. Mireault ◽  
R. Stocker ◽  
D. Dunn ◽  
M. Pooladi-Darvish

Sign in / Sign up

Export Citation Format

Share Document