Effect of Nitrogen Doping on the Phase Evolution of the TiO2 Nanoparticles

2013 ◽  
Vol 829 ◽  
pp. 902-906 ◽  
Author(s):  
Mohammad Derakhshani ◽  
Hossein Abdizadeh ◽  
Mohammad Reza Golobostanfard

Recently photocatalytic materials have been used in variety of industrial applications. TiO2 is the only suitable photocatalytic material for industrial usage due to its benefits such as non-toxicity, stability, and low cost. TiO2 nanoparticles were successfully synthesized from titanium alkoxide precursor by sol-gel method. Effects of nitrogen doping on the microstructure and phase evolution of the TiO2 nanoparticles were investigated. The X-ray diffraction results of doped samples confirm the presence of anatase as the only crystalline phase. The addition of nitrogen in titania matrix leads to disappearance of rutile traces. The scanning electron microscopy show that TiO2 nanoparticle size decreases by increasing nitrogen doping. Furthermore, DSC-TG results reveal that the crystallization temperature of doped sample shifts to higher temperatures of about 100 °C.

2014 ◽  
Vol 1004-1005 ◽  
pp. 774-777 ◽  
Author(s):  
Ji Wan Liu ◽  
Gui Lin Chen ◽  
Wei Feng Liu ◽  
Guo Shun Jiang ◽  
Chang Fei Zhu

A low-cost non-vacuum process for fabrication of Cu2SnSe3 film by sol-gel method and knife-coating process is described. First, a certain amount of Copper (I) chloride and tin (IV) tetrachloride was dissolve into the mixture of water and alcohol and then some Polyvinyl Pyrrolidone (PVP) was added to the solution to obtain based colloidal solution. Next, precursor thin layer was deposited by knife-blading technique on soda-lime glass (SLG). Finally, precursor layer was annealed at selenium flow atmosphere carried by Ar gas at 550oC. Through X-ray diffraction (XRD) and Raman spectra, it is found that pure Cu2SnSe3 film was prepared successfully. Scanning electron microscopy (SEM) and UV–vis–NIR absorbance spectroscopy were used to characterize its morphology and optical bandgap.


2004 ◽  
Vol 828 ◽  
Author(s):  
Zuruzi Abu Samah ◽  
Andrei Kolmakov ◽  
Martin Moskovits ◽  
Noel C. MacDonald

ABSTRACTUsing a novel low-temperature process, we demonstrate the facile integration of crack-free nanostructured titania (NST) as sensing elements in microsystems. Unlike conventional sol-gel methods, NST layers of interconnected nano-walls and nano-wires were formed by reacting Ti surfaces with aqueous hydrogen peroxide solution. Cracks were observed in NST layers formed on blanket Ti films but absent on arrays of patterned Ti pads below a threshold dimension. Analyses using TEM, high resolution SEM, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) reveal that NST consists of anatase TiO2 nano-crystals. NST pads were found able to detect oxygen gas of a few ppm. NST pad arrays were integrated on rigid and flexible substrates with potential applications in low cost and wearable sensing systems.


2013 ◽  
Vol 1 (1) ◽  
pp. 11-14
Author(s):  
N. Sahu ◽  
◽  
R. K. Duchaniya ◽  

The ZnO-CdO nanocomposite was prepared by sol-gel method by using their respective nitrates. It is a simple and low cost method to prepare nanocomposites. The drying temperature and drying period of prepared gel was varied during the synthesis process. The prepared samples were characterized by using scanning electron microscope (SEM), particle size analysis (PSA), X-ray diffraction (XRD) and photoluminescence spectroscopy (PL) to get surface morphology, idea of getting particle of nanosized range so that further characterizations can be done, to study the optical property of synthesized nanocomposite and measure the band gap . The grain size determined by Scherrer’s formula was found to be between 30-50 nm.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6008
Author(s):  
Tahira Yaqoob ◽  
Malika Rani ◽  
Arshad Mahmood ◽  
Rubia Shafique ◽  
Safia Khan ◽  
...  

MXene/Ag2CrO4 nanocomposite was synthesized effectively by means of superficial low-cost co-precipitation technique in order to inspect its capacitive storage potential for supercapacitors. MXene was etched from MAX powder and Ag2CrO4 spinel was synthesized by an easy sol-gel scheme. X-Ray diffraction (XRD) revealed an addition in inter-planar spacing from 4.7 Å to 6.2 Å while Ag2CrO4 nanoparticles diffused in form of clusters over MXene layers that had been explored by scanning electron microscopy (SEM). Energy dispersive X-Ray (EDX) demonstrated the elemental analysis. Raman spectroscopy opens the gap between bonding structure of as-synthesized nanocomposite. From photoluminence (PL) spectra the energy band gap value 3.86 eV was estimated. Electrode properties were characterized by applying electrochemical observations such as cyclic voltammetry along with electrochemical impedance spectroscopy (EIS) for understanding redox mechanism and electron transfer rate constant Kapp. Additionally, this novel work will be an assessment to analyze the capacitive behavior of electrode in different electrolytes such as in acidic of 0.1 M H2SO4 has specific capacitance Csp = 525 F/g at 10 mVs−1 and much low value in basic of 1 M KOH electrolyte. This paper reflects the novel synthesis and applications of MXene/Ag2CrO4 nanocomposite electrode fabrication in energy storage devices such as supercapacitors.


2014 ◽  
Vol 898 ◽  
pp. 33-36 ◽  
Author(s):  
Cai Zhen Zhang ◽  
Yong Gang Chen ◽  
Su Liu

Na/Mg co-doped (Na,Mg):ZnO films were fabricated on pyrex glass substrates by sol-gel spin-coating method. Effects of annealing on properties of the films were particularly investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmittance spectra. The internal stress of the films annealed at different temperature was calculated. Experimental and analytical results show that some NaCl freeze-out derivatives will appear on films when the annealing temperature is too low, with the increasing annealing temperature, the c-axis tensile stress is sharply decreased first, then the c-axis stress was changed into press stress and its value is increased continuously, so the structural, surface and the optical properties of the films improve first and deteriorate afterwards.


2012 ◽  
Vol 1386 ◽  
Author(s):  
Rene Fabian Cienfuegos-Pelaes ◽  
Alejandro Ehécatl Correa ◽  
Ramona Alicia Salazar ◽  
L. Chávez-Guerrero ◽  
M. Hinojosa

ABSTRACTThe objective of the present study is to obtain the electrolyte material YSZ at low cost via sol gel, through exploration of the index rate between the complexing agents and the metallic salts (HMTA / metallic salts) from 1 to 5, prepared by a polymeric way in a sol gel process. We show an easy method that could be used in the industrial scale in order to obtain solid electrolyte material for its application in SOFC to operate at temperatures in the range of 700 800°C. This study has as reference the papers from Lenormand and Rieu about their synthesis of zirconium substituted to 8% of yttrium (CYSZ= 0.2 mol*L-1 metallic salts concentration-). The presence of the phase in the materials has been confirmed by X-ray diffraction assisted by thermal analysis tests, for indexes from 2 to 5 at a temperature of 1000°C for 5 hours at a calcination rate (from amorphous dust obtained at 400°C) of 1000°C per hour. The grain size mean for crystalline powder has an average near 50 nm and standard deviation close to 9 nm, it was confirmed by scanning electron microscope (SEM).


2019 ◽  
Vol 9 (2) ◽  
pp. 3915-3917
Author(s):  
S. Akhtar ◽  
Z. Farid ◽  
H. Ahmed ◽  
S. A. Khan ◽  
Z. N. Khan

Silver (Ag) nanoparticles (NPs) are synthesized and characterized by a low-cost chemical reduction method. Silver nanoparticles (Ag NPs) have pre-occupied the consideration of the scientific community due to their wide range of functions, utility and industrial applications, particularly in the fields of sensing technologies and medicine (particularly their efficiency against microbes, the ability of healing the wound and anti-inflammatory properties). Ag NPs are synthesized by a low-cost fabrication method. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray diffraction (EDX) and photometry techniques are used in this work to identify their nature and potentiality for diverse applications in sensing technologies.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
J. F. Bozeman ◽  
H. Huang

Cu-Pt bimetal catalysts supported on nanocrystalline CeO2(nano-ceria) are synthesized via the low-cost sol-gel approach followed by impregnation processing. The average particle size of the catalytic composites is 63 nm. Ceria nanopowders sequentially impregnated in copper solution and then in Pt solution transformed into Pt-skin-structured Cu-Pt/ceria nanocomposite, based on the surface elemental and bulk compositional analyses. The ceria supporter has a fluorite structure, but the structure of Cu and Pt catalytic contents, not detected by X-ray diffraction spectroscopy due to the low loading level, is yet conclusive. The bimetallic catalytic nanocomposites may potentially serve as sulfur-tolerant anode in solid oxide fuel cells.


Arena Tekstil ◽  
2013 ◽  
Vol 28 (1) ◽  
Author(s):  
Maya Komalasari ◽  
Bambang Sunendar

Partikel nano TiO2 berbasis air dengan pH basa telah berhasil disintesis dengan menggunakan metode sol-gel dan diimobilisasi pada kain kapas dengan menggunakan kitosan sebagai zat pengikat silang. Sintesis dilakukan  dengan prekursor TiCl4 pada konsentrasi 0,3 M, 0,5 M dan 1 M, dan menggunakan templat kanji dengan proses kalsinasi pada suhu 500˚C selama 2 jam. Partikel nano TiO2 diaplikasikan ke kain kapas dengan metoda pad-dry-cure dan menggunakan kitosan sebagai crosslinking agent. Berdasarkan hasil Scanning Electron Microscope (SEM),diketahui bahwa morfologi partikel TiO2 berbentuk spherical dengan ukuran nano (kurang dari 100 nm). Karakterisasi X-Ray Diffraction (XRD) menunjukkan adanya tiga tipe struktur kristal utama, yaitu (100), (101) dan (102) dengan fasa kristal yang terbentuk adalah anatase dan rutile. Pada karakterisasi menggunakan SEM terhadap serbuk dari TiO2 yang telah diaplikasikan ke permukaan kain kapas, terlihat adanya imobilisasi partikel nano TiO2 melalui ikatan hidrogen silang dengan kitosan pada kain kapas. Hasil analisa tersebut kemudian dikonfirmasi dengan FTIR (Fourier Transform Infra Red) yang hasilnya memperlihatkan puncak serapan pada bilangan gelombang 3495 cm-1, 2546 cm-1, dan 511 cm-1,  yang masing-masing diasumsikan sebagai adanya vibrasi gugus fungsi O-H, N-H dan Ti-O-Ti. Hasil SEM menunjukkan pula bahwa kristal nano yang terbentuk diantaranya adalah fasa rutile , yang berdasarkan literatur terbukti dapatberfungsi sebagai anti UV.


Sign in / Sign up

Export Citation Format

Share Document