The Effect of Singeing Calendering Processing on Properties of Filter Needled Nonwoven Fabrics

2013 ◽  
Vol 864-867 ◽  
pp. 605-612
Author(s):  
Xin Cui ◽  
Wei Min Xiao ◽  
Qin Fei Ke

To improve the quality of needled nonwoven for filtration, many companies will finish the nonwoven fabric in order to improve its performance. The process of singeing with calendering finishing is very important to improve its performance, after finishing the internal filter to a certain extent been blocked, reducing the pressure when cleaning, thereby extending the life of fabrics. We used different methods to deal with needle non-woven fabrics for filtration, which including singeing and singeing with calendering. Then we tested the strength, air permeability, weight and other properties of untreated samples, only singeing samples and singeing with calendering samples. The paper analyzed how treatments affect the properties of needle non-woven fabrics for filtration.

2013 ◽  
Vol 365-366 ◽  
pp. 1165-1168
Author(s):  
Jia Horng Lin ◽  
Ya Lan Hsing ◽  
Wen Hao Hsing ◽  
Jin Mao Chen ◽  
Ching Wen Lou

Heat energy plays a significant role in resources and industries, which makes the development of energy-saving and thermal retention materials important to environment protection. This study combines three-dimensional hollow Polyethylene Terephthalate (TPET) fibers, recycled far-infrared polyethylene terephthalate (RFPET) fibers, and low melting temperature polyethylene terephthalate (LPET) fibers at various ratios to make the RFPET/TPET hybrid nonwoven fabric. The tensile strength, tearing strength, air permeability, and far infrared emissivity of the fabrics are evaluated. With a blending ratio of 8:0:2, the hybrid nonwoven fabrics have the optimum tensile strength of 145 N, tear strength of 184 N, and air permeability of 205 cm3/cm2/s.


2015 ◽  
Vol 15 (1) ◽  
pp. 8-12 ◽  
Author(s):  
Guocheng Zhu ◽  
Dana Kremenakova ◽  
Yan Wang ◽  
Jiri Militky

Abstract Air permeability is one of the most important properties of non-woven fabrics in many applications. This paper aims to investigate the effects of thickness, porosity and density on the air permeability of needle-punched non-woven fabrics and compare the experimental values with two models which are based on hydraulic radius theory and drag theory, respectively. The air permeability of the samples was measured by an air permeability tester FX3300. The results showed that the air permeability of non-woven fabrics decreased with the increase in thickness and density of samples, increased with the increase of porosity, and the air permeability was not directly proportional to the pressure gradient. Meanwhile, the prediction model based on hydraulic radius theory had a better agreement with experimental values than the model based on drag theory, but the values were much higher than the experimental results, especially for higher porosity and higher pressure gradient.


2013 ◽  
Vol 457-458 ◽  
pp. 61-64
Author(s):  
Ching Wen Lou ◽  
Wen Hao Hsing ◽  
Chien Teng Hsieh ◽  
Jia Horng Lin

Geotextiles made of nonwoven fabrics can be used in different fields, such as groynes, dams, seawalls, revetments, dunes, and hillsides, and the structures of nonwoven fabrics can be changed accordingly. This study explores the influence of different content of Kevlar fibers on the mechanical and physical properties of Kevlar/Polyester (PET) complex nonwoven fabrics. As specified in a nonwoven fabric manufacturing process Kevlar fibers and PET fibers are blended with various ratios to form Kevlar/PET complex nonwoven fabrics, which are then tested for tear strength, air permeability, and water permeability. The experiment results show that increasing Kevlar fibers reduces the tear strength, air permeability, and water permeability.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2344 ◽  
Author(s):  
Hyun-Ji Kim ◽  
Sung-Hoon Kim ◽  
Sangmoon Park

Carbon fiber-carbon microcoil (CF-CMC) hybrids were formed on carbon fiber (CF)-based fabric. The morphologies of CF-based fabrics and CF-CMC hybridized fabrics were investigated. The electrical conductivities of the CF-CMC hybridized fabrics were examined and compared with those of native CF-based fabrics. Furthermore, the electromagnetic wave shielding effectiveness (SE) of the CF-CMC hybridized fabrics was investigated across operating frequencies in the 8.0–12.0 GHz range, and the results were compared with those for native CF-based fabrics. For the CF-based nonwoven fabrics, the SE values were improved by the CF-CMC hybridization reaction, although the electrical conductivities of the nonwoven fabric were reduced by the CF-CMC hybrid formation. For the CF-based woven fabrics, the SE values were improved by more than twofold throughout the entire range of frequencies, owing to the CF-CMC hybrid formation. This dramatic improvement was partly ascribed to the enhanced electrical conductivity, particularly in the transverse direction to the individual CFs. Owing to the increased thickness of the woven or nonwoven fabrics after the CF-CMC hybrid formation and the intrinsic characteristics of CMCs, the absorption mechanism for the SE was determined for the main factor that contributed to the improvement of the SE values.


2020 ◽  
Vol 39 (9-10) ◽  
pp. 361-372
Author(s):  
C Goergen ◽  
D May ◽  
P Mitschang

A new composite manufacturing process, resin transfer pressing, is introduced in this paper. In this process, nonwoven fabrics made of recycled carbon fibers are oversaturated with thermoset resin, i.e. they contain excess resin. The oversaturated nonwoven fabrics are prefabricated and used as resin carrier in a press process, where they are placed in a heated mold together with a dry textile-based preform. During pressing, the resin is pressed out and transferred from the nonwoven into the non-impregnated preform and hence impregnates the whole reinforcement. This study examines the oversaturation of nonwoven fabrics, the resin transfer pressing laminate manufacturing and the surface quality of the laminates. The ability of a nonwoven fabric to be oversaturated with resin is defined by the saturation degree, which was determined as up to 12 for glass fiber nonwoven fabrics and up to 60 for recycled carbon fiber nonwoven fabrics. Different laminates are manufactured by resin transfer pressing, and the impregnation quality is evaluated. With an optimized stacking sequence, a pore content <1% was achieved. The use of recycled carbon fiber nonwovens in the resin transfer pressing process leads to a less wavy surface compared to a wet compression molding manufactured laminate, showing a decrease of waviness Wz25 of 11% minimum.


2021 ◽  
pp. 004051752110069
Author(s):  
Wafa Guedri ◽  
Mounir Jaoudi ◽  
Slah Msahli

This paper deals with an evaluation of farmer's satisfaction of agrotextile as a date bunch cover using global quality index. Referring to literature studies, desirability function remains an appropriate method that allows a level of flexibility over graphical tool in defining and evaluating quality. The application of desirability function is discussed and investigated. Using a statistical survey based on Tunisian farmers, it was concluded that ideal bagging product depends on date bunch requirements, weight and goal of each individual agrotextile cover's property. Based on a comparative analysis, the desirability function remains sufficient to objectively classify different bags for protection of date palm. Useful index values have been found and can be used by farmers or industries to accurately predict the quality of date bunch cover and to select the best supplier to launch the needed order. In this work, the fabrics that have been considered are woven, knitted and nonwoven fabrics. Nonwoven products are used for the first time in the palm field and have been evaluated in this paper. The results show that nonwoven products were closer to the desired performance compared to knitted and woven fabrics.


Author(s):  
K. M. Faridul Hasan ◽  
Péter György Horváth ◽  
Tibor Alpár

AbstractFabric-based laminated composites are used considerably for multifaceted applications in the automotive, transportation, defense, and structural construction sectors. The fabrics used for composite materials production possess some outstanding features including being lighter weight, higher strength, and lower cost, which helps explain the rising interest in these fabrics among researchers. However, the fabrics used for laminations are of different types such as knit, woven, and nonwoven. Compared to knitted and nonwoven fabrics, woven fabrics are widely used reinforcement materials. Composites made from fabric depend on different properties such as fiber types, origin, compositions, and polymeric matrixes. Finite element analysis is also further facilitating the efficient prediction of final composite properties. As the fabric materials are widely available throughout the world, the production of laminated composites from different fabric is also feasible and cost-effective. This review discusses the fabrication, thermo-mechanical, and morphological performances of different woven, knit, and nonwoven fabric-based composites.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3742
Author(s):  
Payam Sadrolodabaee ◽  
Josep Claramunt ◽  
Mònica Ardanuy ◽  
Albert de la Fuente

Currently, millions of tons of textile waste from the garment and textile industries are generated worldwide each year. As a promising option in terms of sustainability, textile waste fibers could be used as internal reinforcement of cement-based composites by enhancing ductility and decreasing crack propagation. To this end, two extensive experimental programs were carried out, involving the use of either fractions of short random fibers at 6–10% by weight or nonwoven fabrics in 3–7 laminate layers in the textile waste-reinforcement of cement, and the mechanical and durability properties of the resulting composites were characterized. Flexural resistance in pre- and post-crack, toughness, and stiffness of the resulting composites were assessed in addition to unrestrained drying shrinkage testing. The results obtained from those programs were analyzed and compared to identify the optimal composite and potential applications. Based on the results of experimental analysis, the feasibility of using this textile waste composite as a potential construction material in nonstructural concrete structures such as facade cladding, raised floors, and pavements was confirmed. The optimal composite was proven to be the one reinforced with six layers of nonwoven fabric, with a flexural strength of 15.5 MPa and a toughness of 9.7 kJ/m2.


2016 ◽  
Vol 30 (4) ◽  
pp. 545-563 ◽  
Author(s):  
H Shanazari ◽  
GH Liaghat ◽  
H Hadavinia ◽  
A Aboutorabi

In addition to fiber properties, the fabric structure plays an important role in determining ballistic performance of composite body armor textile. Textile structures used in ballistic protection are woven fabrics, unidirectional (UD) fabric structures, and nonwoven fabrics. In this article, an analytical model based on wave propagation and energy balance between the projectile and the target is developed to analyze hybrid fabric panels for ballistic protection. The hybrid panel consists of two types of structure: woven fabrics as the front layers and UD material as the rear layers. The model considers different cross sections of surface of the target in the woven and UD fabric of the hybrid panel. Also the model takes into account possible shear failure by using shear strength together with maximum tensile strain as the failure criteria. Reflections of deformation waves at interface between the layers and also the crimp of the yarn are modeled in the woven part of the hybrid panel. The results show greater efficiency of woven fibers in front layers (more shear resistance) and UD yarns in the rear layers (more tensile resistance), leading to better ballistic performance. Also modeling the yarn crimp results in more trauma at the backface of the panel producing data closer to the experimental results. It was found that there is an optimum ratio of woven to UD materials in the hybrid ballistic panel.


2011 ◽  
Vol 70 ◽  
pp. 405-409 ◽  
Author(s):  
Emrah Demirci ◽  
Memiş Acar ◽  
Behnam Pourdeyhimi ◽  
Vadim V. Silberschmidt

Having a unique microstructure, nonwoven fabrics possess distinct mechanical properties, dissimilar to those of woven fabrics and composites. This paper aims to introduce a methodology for simulating a dynamic response of core/sheath-type thermally bonded bicomponent fibre nonwovens. The simulated nonwoven fabric is treated as an assembly of two regions with distinct mechanical properties. One region - the fibre matrix – is composed of non-uniformly oriented core/sheath fibres acting as link between bond points. Non-uniform orientation of individual fibres is introduced into the model in terms of the orientation distribution function in order to calculate the structure’s anisotropy. Another region – bond points – is treated in simulations as a deformable bicomponent composite material, composed of the sheath material as its matrix and the core material as reinforcing fibres with random orientations. Time-dependent anisotropic mechanical properties of these regions are assessed based on fibre characteristics and manufacturing parameters such as the planar density, core/sheath ratio, fibre diameter etc. Having distinct anisotropic mechanical properties for two regions, dynamic response of the fabric is modelled in the finite element software with shell elements with thicknesses identical to those of the bond points and fibre matrix.


Sign in / Sign up

Export Citation Format

Share Document