scholarly journals Designing Q&P Process for Experimental Steel with 0.47 % Carbon Content

2014 ◽  
Vol 887-888 ◽  
pp. 257-261 ◽  
Author(s):  
Vít Pileček ◽  
Hana Jirková ◽  
Bohuslav Mašek

The Q&P process (Quenching and Partitioning) is a heat treating method for high-strength low-alloyed steels. It delivers the desired combinations of high strength and adequate ductility. These properties are achieved thanks to the unique martensitic microstructure with a certain volume fraction of stable retained austenite. Retained austenite imparts plasticity to the otherwise brittle martensitic structure. Optimum mechanical properties are achieved by using correct processing parameters and chemistry of the material. The experimental material was a steel with 0.47 % carbon alloyed with silicon, manganese and chromium. The purpose of the effort was to optimise the heat treating parameters in order to obtain a strength level above 2000 MPa and an elongation of no less than 10%. In the first step, the appropriate austenitizing temperature was identified. In the second, effects of various quenching temperatures and cooling rates on the microstructure evolution were explored. In the third, the impact of raising the partitioning temperature on stabilization of retained austenite was examined. Adjustment of the parameters led to a strength of more than 2300 MPa and an elongation of 8 %.

2013 ◽  
Vol 738-739 ◽  
pp. 212-216 ◽  
Author(s):  
Elena V. Pereloma ◽  
Azdiar A. Gazder ◽  
Ilana B. Timokhina

Advances in the development of new high strength steels have resulted in microstructures containing significant volume fractions of retained austenite. The transformation of retained austenite to martensite upon straining contributes towards improving the ductility. However, in order to gain from the above beneficial effect, the volume fraction, size, morphology and distribution of the retained austenite need to be controlled. In this regard, it is well known that carbon concentration in the retained austenite is responsible for its chemical stability, whereas its size and morphology determines its mechanical stability. Thus, to achieve the required mechanical properties, control of the processing parameters affecting the microstructure development is essential.


2017 ◽  
Vol 62 (3) ◽  
pp. 1485-1491 ◽  
Author(s):  
L. Kučerová ◽  
K. Opatová ◽  
J. Káňa ◽  
H. Jirková

AbstractThe effect of processing parameters on the final microstructure and properties of advanced high strength CMnSiNb steel was investigated. Several processing strategies with various numbers of deformation steps and various cooling schedules were carried out, namely heat treatment without deformation, conventional quenching and TRIP steel processing with bainitic hold or continuous cooling. Obtained multiphase microstructures consisted of the mixture of ferrite, bainite, retained austenite and M-A constituent. They possessed ultimate tensile strength in the range of 780-970 MPa with high ductility A5mmabove 30%. Volume fraction of retained austenite was for all the samples around 13%. The only exception was reference quenched sample with the highest strength 1186 MPa, lowest ductility A5mm= 20% and only 4% of retained austenite.


2018 ◽  
Vol 24 (2) ◽  
pp. 119
Author(s):  
Dagmar Bublíková ◽  
Štěpán Jeníček ◽  
Michal Peković ◽  
Hana Jirková

<p>The requirements placed on closed-die-forged parts of advanced steels have been increasing recently. Such forgings demand an innovative approach to both design and heat treatment. It is important to obtain high strength and sufficient ductility in closed-die forgings. High strength, mostly associated with martensitic microstructure, is often to the detriment of ductility. Ductility can be improved by incorporating a certain volume fraction of retained austenite in the resulting microstructure. Among heat treatment processes capable of producing martensite and retained austenite, there is the Q&amp;P process (Quenching and Partitioning). This process is characterized by rapid cooling from the soaking temperature to the quenching temperature, which is between Ms and Mf, and subsequent reheating and holding at the partitioning temperature. Thus, strength levels of more than 2000 MPa combined with more than 10% elongation can be obtained. This experimental programme involved steels with 2.5% manganese. Forgings of these steels were heat treated using an innovative process in order to obtain an ultimate strength of more than 2000 MPa combined with sufficient elongation. Thanks to a higher manganese level, the Mf was depressed as low as 78°C, and therefore quenching was carried out not only in air but also in boiling water. Holding at the partitioning temperature of 180°C, when carbon migrates from super-saturated martensite to retained austenite, took place in a furnace. The effects of heat treatment parameters on the resulting mechanical properties and microstructure evolution in various locations of the forging were studied.</p>


2014 ◽  
Vol 1063 ◽  
pp. 42-46 ◽  
Author(s):  
Fei Bao Zhang ◽  
Hong Wu Song ◽  
Ming Cheng ◽  
Xin Li ◽  
Shi Hong Zhang ◽  
...  

To make steel exhibit attractive properties as high strength and good ductility, this paper presents a novel one step method for forming-Q&P integration—Hot Stamping-Dynamic Partitioning (HS-DP) process. The proposed HS-DP process is simulated with salt bath heat treatment. The effect of microstructure and mechanical properties in a low-carbon AHSS with different cooling rate of the new process is investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD) and tensile test methods. Microstructure of the steel subjected to HS-DP treatment is mainly composed of initial quenched martensite phase , final quenched martensite phase and retained austenite phase formed. The impact of retained austenite is also discussed, especially the influence of elongation caused by various retained austenite volume fraction and carbon-content. This experiment illustrates the promising application potential of the hot stamping-dynamic carbon partitioning process.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2302 ◽  
Author(s):  
Yilin Wang ◽  
Huicheng Geng ◽  
Bin Zhu ◽  
Zijian Wang ◽  
Yisheng Zhang

The application of the quenching and partitioning (Q-P) process on advanced high-strength steels improves part ductility significantly with little decrease in strength. Moreover, the mechanical properties of high-strength steels can be further enhanced by the stepping-quenching-partitioning (S-Q-P) process. In this study, a two-stage quenching and partitioning (two-stage Q-P) process originating from the S-Q-P process of an advanced high-strength steel 30CrMnSi2Nb was analyzed by the simulation method, which consisted of two quenching processes and two partitioning processes. The carbon redistribution, interface migration, and phase transition during the two-stage Q-P process were investigated with different temperatures and partitioning times. The final microstructure of the material formed after the two-stage Q-P process was studied, as well as the volume fraction of the retained austenite. The simulation results indicate that a special microstructure can be obtained by appropriate parameters of the two-stage Q-P process. A mixed microstructure, characterized by alternating distribution of low carbon martensite laths, small-sized low-carbon martensite plates, retained austenite and high-carbon martensite plates, can be obtained. In addition, a peak value of the volume fraction of the stable retained austenite after the final quenching is obtained with proper partitioning time.


2021 ◽  
Vol 1016 ◽  
pp. 732-737
Author(s):  
Junya Kobayashi ◽  
Hiroto Sawayama ◽  
Naoya Kakefuda ◽  
Goroh Itoh ◽  
Shigeru Kuraoto ◽  
...  

Various high strength steel sheets for weight reduction and safety improvement of vehicles have been developed. TRIP-aided steel with transformation induced plasticity of the retained austenite has high strength and ductility. Conventional TRIP-aided steels are subjected to austempering process after austenitizing. Generally, elongation and formability of TRIP-aided steel are improved by finely dispersed retained austenite in BCC phase matrix. The finely dispersed retained austenite and grain refinement of TRIP-aided steel can be achieved by hot rolling with heat treatment. Therefore, the improvement of mechanical properties of TRIP-aided steel is expected from the manufacturing process with hot rolling and then isothermal transformation process. In this study, thermomechanical heat treatment is performed by combining hot rolling and isothermal holding as the manufacturing process of TRIP-aided steel sheets. The complex phase matrix is obtained by hot rolling and then isothermal holding. Although the hardness of the hot rolled and isothermal held TRIP-aided steel is decreased, the volume fraction of retained austenite is increased.


Crystals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 573
Author(s):  
Jing Zhao ◽  
Dezheng Liu ◽  
Yan Li ◽  
Yongsheng Yang ◽  
Tiansheng Wang ◽  
...  

The microstructures and mechanical properties of ausrolled nanobainite steel, after being tempered at temperatures in the range of 200−400 °C, were investigated in this study. After being tempered, bainitic ferrite is coarsened and the volume fraction of retained austenite is reduced. The hardness and ultimate tensile strength decrease sharply. The impact energy, yield strength, and elongation increase with elevated tempered temperature at 200–300 °C but decrease with elevated tempered temperature when the samples are tempered at 350 °C and 400 °C. The fracture appearance of all the samples after impact tests is a brittle fracture. The variation of the mechanical properties may be due to partial recovery and recrystallization.


Author(s):  
K. C. Baker ◽  
R. M. Thompson ◽  
T. C. Gorrell

Recent upstream oil and gas industry experience has raised attention to substandard properties with high strength carbon steel forgings manufactured to the requirements of ASTM A694 and MSS-SP-44. As part of an internal investigation into quality of commodity pipeline flanges, three flanges certified as ASTM A694 grade F60 to F70, were purchased off-the-shelf from three different manufacturers for microstructural and mechanical property investigation. All three flanges were supplied with material test certificates indicating acceptable material properties. Tensile and Charpy impact specimens were extracted from various locations and orientations in each flange. All three flanges failed to meet yield strength requirements for the specified grade. The impact energy and shear area values were well below those reported on the material test certificates. The discrepancy between the sacrificial testing results and the material test certificates is attributed to the use of separately forged test blocks for quality testing instead of integral prolongations or a sacrificial production part, which is permitted by ASTM A694 and MSS-SP-44. Further investigation was made into the chemical composition and heat treating practices. The chemical composition can be characterized as high strength, low alloy steel (HSLA) by virtue of 0.05–0.08 wt. pct. vanadium added to a carbon-manganese steel with CE(IIW) ranging from 0.43 to 0.45. Advanced microscopy showed that the morphology of the vanadium precipitates was inadequate as a strengthener and deleterious to Charpy impact properties for the size of the flanges and the heat treatment practices applied.


2017 ◽  
Vol 732 ◽  
pp. 55-58
Author(s):  
Chieh Yu ◽  
Ta Chien Cheng ◽  
Ren Kae Shiue ◽  
Tze Ching Yang ◽  
Ching Yuan Huang

The purpose of this investigation is focused on the direct quench and temper mechanisms of the high strength offshore steel. Microstructural analyses of martensite and retained austenite in the direct quenched steel, simulations of martensitic transformation temperatures, Ms/Mf, and morphologies of bainite and ferrite have been evaluated in the experiment. Additionally, carbide formation after temped at various temperatures and microhardness depth profiles after heat treating are also included in the study. The direct quenched steel is primarily comprised of martensite, bainite and a few retained austenite with Vickers microhardness above 300. Tempered martensite, iron carbide and bainite are widely observed from all tempered specimens.


Sign in / Sign up

Export Citation Format

Share Document