Influence of Grain Size and Grain Boundary of Workpiece on Micro EDM

2014 ◽  
Vol 941-944 ◽  
pp. 2116-2120 ◽  
Author(s):  
Qing Yu Liu ◽  
Qin He Zhang ◽  
Jian Hua Zhang ◽  
Min Zhang

Micro EDM is used to machine micro features which are of the same size order as material microstructure of workpiece. Due to the difference of the thermal properties between the crystal grain and grain boundary, the machining performance of micro EDM varies with the crystal grain sizes of workpiece. This paper investigated on the influence of grain size and grain boundary on the machining performance of micro EDM. By drilling micro holes on two pieces of stainless steel 304 (SUS 304) which are different in grain sizes, test results revealed that the characteristics of micro EDM is influenced by grain sizes of workpiece materials significantly.

2013 ◽  
Vol 549 ◽  
pp. 503-510 ◽  
Author(s):  
Gianluca D'Urso ◽  
Giancarlo Maccarini ◽  
C. Merla

The recent miniaturization trend in manufacturing, has enhanced the production of new and highly sophisticated systems in various industrial fields. In recent years, machining of the so called difficult to cut materials has become an important issue in several sectors. Micro Electrical Discharge Machining (micro-EDM) thanks to its contactless nature, is one of the most important technologies for the machining of this type of materials and it can be considered as one of the most promising manufacturing technologies for the fabrication of micro components. One of the most relevant applications of micro-EDM is micro-drilling. Micro holes in fact, are widely used for example in micro-electromechanical systems (MEMS), serving as channels or nozzles to connect two micro-features, and in micro-mechanical components. The present study is about micro drilling of metal plates by means of micro-EDM technology. In particular, the aim of this work is to investigate the effects of the downsizing of the micro holes diameter on the drilling performances. The influence of the reduction of the diameters in terms of both process performances (e.g., tool wear, taper rate, diametrical overcut) and general quality of the holes was investigated. Steel plates having thickness equal to 0.8 mm were taken into account. The drilling process was carried out using a micro-EDM machine Sarix SX 200 with carbide electrodes having diameter equal to 300, 200, 100 and 50 μm. Since the standard electrodes adopted in this study had a diameter equal to 300 μm, a wire EDM unit was used to obtain the other electrodes. The relationship between the process parameters considered the most significant and the final output, was studied. Furthermore, the geometrical and dimensional properties of the micro-holes were analyzed using both optical and scanning electron microscopes. In particular, it is demonstrated that the diameter size has a significant influence on the final value of the diametrical overcut while peak current and frequency parameters have a negligible effect.


2021 ◽  
Vol 2021 (3) ◽  
pp. 77-85
Author(s):  
K. M. Borysovska ◽  
◽  
N. M. Marchenko ◽  
Yu. M. Podrezov ◽  
S. O. Firstov ◽  
...  

The (DD) method was used to model the formation of the plastic zone of the top of the cracks in polycrystalline molybdenum. Special attention was paid to take into account the interaction of dislocations in the plastic zone with grain boundaries. Structural sensitivity of fracture toughness was analyzed under brittle-ductile condition. Simulations were performed for a range of grain sizes from 400 to 100 μm, at which a sudden increase in fracture toughness with a decrease of grain size was experimentally shown. We calculated the value of K1c taking into account the shielding action of dislocations. The position of all dislocations in the plastic zone at fracture moment was calculated. Based on these data, we obtained the dependences of dislocation density on the distance from the crack tip thereby confirming significant influence of the grain boundaries on plastic zone formation. At large grain sizes, when the plastic zone does not touch the boundary, the distribution of dislocations remained unchanged. As grains reduce their size to size of the plastic zone, they start formating a dislocation pile – up near the boundaries. Dislocations on plastic zone move slightly toward the crack tip, but the density of dislocations in the middle of the grain remains unchanged, and fracture toughness remains almost unchanged. Further reduction of the grain size leads to the Frank-Reed source activation on the grain boundary Forming dislocation pile-up of the neighbor grains. Its stress concentration acts on dislocations of the first grain and causes redistribution of plastic zone dislocations. If the reduction in grain size is not enough to form a strong pile-up, density of dislocations on plastic zone increases slightly and crack resistance increases a few percent. Further reduction of grains promotes strong pile-up, dislocations move to crack tip, and its density on plastic zone increases. Crack is shielded and fracture toughness increases sharply. The calculation showed that the fracture toughness jump is observed at grain sizes of 100—150 μm, in good agreement with the experiment. Keywords: dislocation dynamics simulation, molybdenum, fracture toughness, grain size, plastic zone, brittle-ductile transition.


2021 ◽  
Author(s):  
Mark Coleman ◽  
Bernhard Grasemann ◽  
David Schneider ◽  
Konstantinos Soukis ◽  
Riccardo Graziani

<p>Microstructures may be used to determine the processes, conditions and kinematics under which deformation occurred. For a given set of these variables, different microstructures are observed in various materials due to the material’s physical properties. Dolomite is a major rock forming mineral, yet the mechanics of dolomite are understudied compared to other ubiquitous minerals such as quartz, feldspar, and calcite. Our new study uses petrographic, structural and electron back scatter diffraction analyses on a series of dolomitic and calcitic mylonites to document differences in deformation styles under similar metamorphic conditions. The Attic-Cycladic Crystalline Complex, Greece, comprises a series of core complexes wherein Miocene low-angle detachment systems offset and juxtapose a footwall of high-pressure metamorphosed rocks against a low-grade hanging wall. This recent tectonic history renders the region an excellent natural laboratory for studying the interplay of the processes that accommodate deformation. The bedrock of Mt. Hymittos, Attica, preserves a pair of ductile-then-brittle normal faults dividing a tripartite tectonostratigraphy. Field observations, mineral assemblages and observable microstructures suggests the tectonic packages decrease in metamorphic grade from upper greenschist facies (~470 °C at 0.8 GPa) in the stratigraphically lowest package to sub-greenschist facies in the stratigraphically highest package. Both low-angle normal faults exhibit cataclastic fault cores that grade into the schists and marbles of their respective hanging walls. The middle and lower tectonostratigraphic packages exhibit dolomitic and calcitic marbles that experienced similar geologic histories of subduction and exhumation. The mineralogically distinct units (calcite vs. dolomite) of the middle package deformed via different mechanisms under the same conditions within the same package and may be contrasted with mineralogically similar units that deformed under higher pressure and temperature conditions in the lower package. In the middle unit, dolomitic rocks are brittlely deformed. Middle unit calcitic marble are mylonitic to ultramylonitic with average grain sizes ranging from 30 to 8 μm. These mylonites evince grain-boundary migration and grain size reduction facilitated by subgrain rotation. Within the lower package, dolomitic and calcitic rocks are both mylonitic to ultramylonitic with grain sizes ranging from 28 to 5 μm and preserve clear crystallographic preferred orientation fabrics. Calcitic mylonites exhibit deformation microstructures similar to those of the middle unit. Distinctively, the dolomitic mylonites of the lower unit reveal ultramylonite bands cross-cutting and overprinting an older coarser mylonitic fabric. Correlated missorientation angles suggest these ultramylonites show evidence for grain size reduction accommodated by microfracturing and subgrain rotation. In other samples the dolomitic ultramylonite is the dominant fabric and is overprinting and causing boudinage of veins and relict coarse mylonite zones. Isolated interstitial calcite grains within dolomite ultramylonites are signatures of localized creep-cavitation processes. Following grain size reduction, grain boundary sliding dominantly accommodated further deformation in the ultramylonitic portions of the samples as indicated by randomly distributed correlated misorientation angles. This study finds that natural deformation of dolomitic rocks may occur by different mechanisms than those identified by published experiments; notably that grain-boundary migration and subgrain rotation may be active in dolomite at much lower temperatures than previously suggested.</p>


Soil Research ◽  
1998 ◽  
Vol 36 (1) ◽  
pp. 167 ◽  
Author(s):  
R. H. Crockford ◽  
P. M. Fleming

A comprehensive sediment sampling program was undertaken in the upper Molonglo catchment in south-eastern New South Wales to determine if mineral magnetics could be used to estimate sidestream contribution at river confluences in this environment. Some 12 confluences were examined over 1400 km 2 in 2 major basins and over 2 contrasting geological types. Sediment samples were divided into 7 size classes and the following magnetic properties measured: magnetic susceptibility at 2 frequencies, isothermal remanent magnetisation at 3 flux densities, and anhysteristic remanent magnetisation. The sidestream inputs were calculated for each particle size class from the range of magnetic parameters. Significant discrepancies and differences appeared in the resultant sidestream inputs, and this paper outlines the conclusions as to the reliability of the different analytical procedures. It is shown that both the concentration and magnetic grain size of ferrimagnetic minerals in the sediments must be taken into account. Where the difference in magnetic grain size between the upstream and sidestream sediments is small, the use of parameter crossplots or bulked magnetic ratios is generally not appropriate. The use of mass (concentration) magnetic values may be better. The difference in the demands of the crossplots and mass values methods is that crossplots require a wide range of mass magnetic concentrations in each branch, with the upstream and sidestream sediments having different magnetic grain sizes, whereas the mass values procedure does best with a very limited (but different) range of concentrations at the upstream and sidestream branches, but similar magnetic grain sizes. This paper provides an extensive discussion of the estimation technique using different parameter combinations, and uses 3 contrasting confluences as case studies.


1999 ◽  
Vol 564 ◽  
Author(s):  
Qing-Tang Jiang ◽  
Michael E. Thomas ◽  
Gennadi Bersuker ◽  
Brendan Foran ◽  
Robert Mikkola ◽  
...  

AbstractTransformations in electroplated Cu films from a fine to course grain crystal structure (average grain sizes went from ∼0.1 µm to several microns) were observed to strongly depend on film thickness and geometry. Thinner films underwent much slower transformations than thicker ones. A model is proposed which explains the difference in transformation rates in terms of the physical constraint experienced by the film since grain growth in thinner films is limited by film thickness. Geometrical constraints imposed by trench and via structures appear to have an even greater retardation effect on the grain growth. Experimental observations indicate that it takes much longer for Cu in damascene structures to go through grain size transformations than blanket films.


2010 ◽  
Vol 126-128 ◽  
pp. 829-834
Author(s):  
G. Yin ◽  
Z. Yu ◽  
C. An ◽  
J. Li

Micro electrical discharge machining (EDM) has the ability to drill micro holes with high accuracy in metallic materials. The aspect ratio of a micro hole generated by micro EDM is usually higher than those by other processes such as etching, mechanical drilling, and laser. However, it was found that the drilling speed of micro EDM slows down and even stops when the aspect ratio reaches a certain value. To understand this phenomenon, a theoretical model is proposed based on the fluid mechanics and surface tension. Experiments under different machining conditions are carried to verify this model. Experimental results agree with the theoretical values, which indicate the validity of the proposed model. The difference between the theoretical values and the real values might be caused by the debris and the temperature in the discharge gap, which are ignored in the model.


2007 ◽  
Vol 345-346 ◽  
pp. 565-568
Author(s):  
Byung Nam Kim ◽  
Keijiro Hiraga ◽  
Koji Morita ◽  
Hidehiro Yoshida

For steady-state deformation caused by grain-boundary diffusion and viscous grain-boundary sliding, the creep rate of regular polyhedral grains is analyzed by the energy-balance method. For the microstructure, the grain-grain interaction increases the degree of symmetry of diffusional field, resulting in a decrease of the effective diffusion distance. Meanwhile, the viscous grain-boundary sliding is found to decrease the creep rate. The present analysis reveals that the grain-size exponent is dependent on the grain size and the grain-boundary viscosity: the exponent becomes unity for small grain sizes and/or high viscosity, while it is three for large grain sizes and/or low viscosity.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3223 ◽  
Author(s):  
Abdelrahim Husain ◽  
Peiqing La ◽  
Yue Hongzheng ◽  
Sheng Jie

In the present study, molecular dynamics simulations were employed to investigate the effect of strain rate on the plastic deformation mechanism of nanocrystalline 316 L stainless-steel, wherein there was an average grain of 2.5–11.5 nm at room temperature. The results showed that the critical grain size was 7.7 nm. Below critical grain size, grain boundary activation was dominant (i.e., grain boundary sliding and grain rotation). Above critical grain size, dislocation activities were dominant. There was a slight effect that occurred during the plastic deformation mechanism transition from dislocation-based plasticity to grain boundaries, as a result of the stress rate on larger grain sizes. There was also a greater sensitive on the strain rate for smaller grain sizes than the larger grain sizes. We chose samples of 316 L nanocrystalline stainless-steel with mean grain sizes of 2.5, 4.1, and 9.9 nm. The values of strain rate sensitivity were 0.19, 0.22, and 0.14, respectively. These values indicated that small grain sizes in the plastic deformation mechanism, such as grain boundary sliding and grain boundary rotation, were sensitive to strain rates bigger than those of the larger grain sizes. We found that the stacking fault was formed by partial dislocation in all samples. These stacking faults were obstacles to partial dislocation emission in more sensitive stress rates. Additionally, the results showed that mechanical properties such as yield stress and flow stress increased by increasing the strain rate.


1993 ◽  
Vol 30 (5) ◽  
pp. 727-738 ◽  
Author(s):  
P.G. Nicholson ◽  
R.B. Seed ◽  
H.A. Anwar

Several alternative approaches have been suggested for evaluation and correction of the testing errors caused by membrane compliance. The degree to which membrane compliance may affect the results of an undrained test is a function of the soil grain size and overall geometry of the test specimen, as well as specimen density and range of effective confining stresses during a given test. Membrane-compliance effects may be negligible for fine sands and silts tested in conventional 71 mm diameter samples, since even very thin membranes cannot penetrate significantly into the small surficial voids. For medium to coarse sands and gravels, however, membrane-compliance effects may have a significant influence on test results. The scope of this paper is threefold: firstly, to review, examine, and evaluate the variety of methods to measure and characterize membrane compliance; secondly, to develop an improved understanding of the factors affecting membrane compliance; and thirdly, to provide an enhanced, updated, and expanded correlation for estimating membrane compliance characteristics as a function of material grain size for a range of soil types, including a wide range of gradation types and representative grain sizes from silts through gravels. Key words : membrane, penetration, compliance, undrained testing, triaxial, measurement, evaluation.


2018 ◽  
Vol 17 (01) ◽  
pp. 89-105 ◽  
Author(s):  
Param Singh ◽  
Vinod Yadava ◽  
Audhesh Narayan

Inconel 718 superalloy is widely used in aerospace industries for fabrication of the various components for aircraft engine because of its high strength at elevated temperature. It is an extremely difficult-to-machine material due to its work hardening nature and poor thermal conductivity. Creating micro-holes of high precision in this material is beyond the capability of conventional twist drill due to its low thermal conductivity. Micro-electrical discharge machining (micro-EDM) is a well-established process for the machining of any electrically conductive hard and brittle material, but due to very small feature size and narrow discharge gap, removal of debris becomes difficult, causes arcing and short-circuiting. In order to solve this problem, authors indigenously developed an innovative ultrasonic-assisted micro-EDM setup for workpiece vibration. The machining performance characteristics of Inconel 718 superalloy was studied using the developed setup in sinking configuration in terms of material removal rate (MRR), tool wear rate (TWR) and hole taper ([Formula: see text]) considering the effect of ultrasonic power, gap current, pulse on time and pulse off time. It was observed that higher ultrasonic power was more suitable for higher MRR, lower TWR and [Formula: see text]. It was also found from the results that 3 A gap current at 6[Formula: see text][Formula: see text]s pulse on time was appropriate for better MRR and 12[Formula: see text][Formula: see text]s pulse on time was more appropriate for low TWR and [Formula: see text]. The scanning electron microscope (SEM) analysis of created micro-holes was also performed with and without ultrasonic vibration to ensure the quality as well as accuracy.


Sign in / Sign up

Export Citation Format

Share Document