Study on the Combustion Noise Characteristic of Low Speed Diesel Engine

2014 ◽  
Vol 945-949 ◽  
pp. 750-753 ◽  
Author(s):  
Li Qi Yan ◽  
Hui Jun Ge

In recent years, the Low speed two stroke diesel engines are widely used as the main power device of big ship for its so many advantages such as the high power, better economical efficiency and good maintenance. However, the problem of diesel strong vibration and noise becomes a more and more serious at the same time. Because of the Construction Features of marine two-stroke low-speed diesel engine, the structure has to be suffered different kind of forces when it runs. In considering the source of vibration, the whole noise can be divided into combustion noise、machinery noise and aerodynamic noise. The combustion noise caused by cylinder pressure is the most important part of diesel noise. In this paper, the cylinder pressure curves are tested. The internal combustion engine dynamics and the equivalent node load are used in the calculation procedure to achieve the real condition simulation. The loading program is made to simulate the change of cylinder pressure and the move of piston. The transient response of the diesel engine is calculated. The characteristics of diesel caused by cylinder pressure are analyzed.The response analysis can be used to the vibration control.

Author(s):  
Sukhbir Singh Khaira ◽  
Amandeep Singh ◽  
Marcis Jansons

Acoustic noise emitted by a diesel engine generally exceeds that produced by its spark-ignited equivalent and may hinder the acceptance of this more efficient engine type in the passenger car market (1). This work characterizes the combustion noise from a single-cylinder direct-injection diesel engine and examines the degree to which it may be minimized by optimal choice of injection parameters. The relative contribution of motoring, combustion and resonance components to overall engine noise are determined by decomposition of in-cylinder pressure traces over a range of load, injection pressure and start of injection. The frequency spectra of microphone signals recorded external to the engine are correlated with those of in-cylinder pressure traces. Short Time Fourier Transformation (STFT) is applied to cylinder pressure traces to reveal the occurrence of motoring, combustion noise and resonance in the frequency domain over the course of the engine cycle. Loudness is found to increase with enhanced resonance, in proportion to the rate of cylinder pressure rise and under conditions of high injection pressure, load and advanced injection timing.


Author(s):  
Stephen Busch ◽  
Kan Zha ◽  
Alok Warey ◽  
Francesco Pesce ◽  
Richard Peterson

For a pilot–main injection strategy in a single-cylinder light-duty diesel engine, the dwell between the pilot- and main-injection events can significantly impact combustion noise. As the solenoid energizing dwell decreases below 200 μs, combustion noise decreases by approximately 3 dB and then increases again at shorter dwells. A zero-dimensional thermodynamic model has been developed to capture the combustion noise reduction mechanism; heat release (HR) profiles are the primary simulation input and approximating them as top-hat shapes preserves the noise reduction effect. A decomposition of the terms of the underlying thermodynamic equation reveals that the direct influence of HR on the temporal variation of cylinder pressure is primarily responsible for the trend in combustion noise. Fourier analyses reveal the mechanism responsible for the reduction in combustion noise as a destructive interference in the frequency range between approximately 1 kHz and 3 kHz. This interference is dependent on the timing of increases in cylinder pressure during pilot HR relative to those during main HR. The mechanism by which combustion noise is attenuated is fundamentally different from the traditional noise reduction that occurs with the use of long-dwell pilot injections, for which noise is reduced primarily by shortening the ignition delay of the main injection. Band-pass filtering of measured cylinder pressure traces provides evidence of this noise reduction mechanism in the real engine. When this close-coupled pilot noise reduction mechanism is active, metrics derived from cylinder pressure such as the location of 50% HR, peak HR rates, and peak rates of pressure rise cannot be used reliably to predict trends in combustion noise. The quantity and peak value of the pilot HR affect the combustion noise reduction mechanism, and maximum noise reduction is achieved when the height and steepness of the pilot HR profile are similar to the initial rise of the main HR event. A variation of the initial rise rate of the main HR event reveals trends in combustion noise that are the opposite of what would happen in the absence of a close-coupled pilot. The noise reduction mechanism shown in this work may be a powerful tool to improve the tradeoffs among fuel efficiency, pollutant emissions, and combustion noise.


2021 ◽  
Vol 25 (Spec. issue 1) ◽  
pp. 101-110
Author(s):  
Erdinc Vural ◽  
Serkan Ozel ◽  
Salih Ozer

In this study, piston and valve surfaces of a Diesel engine to improve exhaust emis?sion and engine performance values, NiCr with bond coat and without bond coat with Cr2O3, Al2O3+13%TiO2, Cr2O3+25%Al2O3 coatings were coated using plasma spray method. By examining the micro-structures of the coating materials, it was observed that a good coating bond is formed. In this study, unlike other coating applications, two different and proportions of specific ceramic powders were coated on the combustion chamber elements, mounted on a Diesel engine, and their effects on engine performance and emissions were tested on the engine dynamometer. For this purpose, the internal combustion engine was operated at 1400, 1700, 2000, 2300, 2600, 2900, and 3200 rpm engine speeds and engine power, engine torque, in-cylinder pressure changes and heat release rate values were recorded. In this study, the that results were obtained by comparing thermal barrier coated engine with standard engine. An increase of 14.92% in maximum engine power, 12.35% in engine torque, 13% in-cylinder pressure, heat release rate by 4.5%, and brake thermal efficiency by 10.17% was detected, while brake specific fuel consumption decreased by 14.96%.


Author(s):  
Stephen Busch ◽  
Kan Zha ◽  
Alok Warey ◽  
Francesco Pesce ◽  
Richard Peterson

For a pilot-main injection strategy in a single cylinder light duty diesel engine, the dwell between the pilot- and main-injection events can significantly impact combustion noise. As the solenoid energizing dwell decreases below 200 μs, combustion noise decreases by approximately 3 dB and then increases again at shorter dwells. A zero-dimensional thermodynamic model has been developed to capture the combustion-noise reduction mechanism; heat-release profiles are the primary simulation input and approximating them as top-hat shapes preserves the noise-reduction effect. A decomposition of the terms of the underlying thermodynamic equation reveals that the direct influence of heat-release on the temporal variation of cylinder-pressure is primarily responsible for the trend in combustion noise. Fourier analyses reveal the mechanism responsible for the reduction in combustion noise as a destructive interference in the frequency range between approximately 1 kHz and 3 kHz. This interference is dependent on the timing of increases in cylinder-pressure during pilot heat-release relative to those during main heat-release. The mechanism by which combustion noise is attenuated is fundamentally different from the traditional noise reduction that occurs with the use of long-dwell pilot injections, for which noise is reduced primarily by shortening the ignition delay of the main injection. Band-pass filtering of measured cylinder-pressure traces provides evidence of this noise-reduction mechanism in the real engine. When this close-coupled pilot noise-reduction mechanism is active, metrics derived from cylinder-pressure such as the location of 50% heat-release, peak heat-release rates, and peak rates of pressure rise cannot be used reliably to predict trends in combustion noise. The quantity and peak value of the pilot heat-release affect the combustion noise reduction mechanism, and maximum noise reduction is achieved when the height and steepness of the pilot heat-release profile are similar to the initial rise of the main heat-release event. A variation of the initial rise-rate of the main heat-release event reveals trends in combustion noise that are the opposite of what would happen in the absence of a close-coupled pilot. The noise-reduction mechanism shown in this work may be a powerful tool to improve the tradeoffs among fuel efficiency, pollutant emissions, and combustion noise.


Author(s):  
Fabrizio Ponti ◽  
Vittorio Ravaglioli ◽  
Davide Moro ◽  
Matteo De Cesare

Newly developed Diesel engine control strategies are mainly aimed at pollutant emissions reduction, due to the increasing request for engine-out emissions and fuel consumption reduction. In order to reduce engine-out emissions, the development of closed-loop combustion control algorithms has become crucial. Modern closed-loop combustion control strategies are characterized by two main aspects: the use of high EGR rates (the goal being to obtain highly premixed combustions) and the control of the center of combustion. In order to achieve the target center of combustion, conventional combustion control algorithms correct the measured value by varying Main injection timing. It is possible to obtain a further reduction in pollutant emissions through a proper variation of the injection parameters. Modern Diesel engine injection systems allow designing injection patterns with many degrees of freedom, due to the large number of tuneable injection parameters (such as start and duration of each injection). Each injection parameter’s variation causes variations in the whole combustion process and, consequently, in pollutant emissions production. Injection parameters variations have a strong influence on other quantities that are related to combustion process effectiveness, such as noise radiated by the engine. This work presents a methodology that allows real-time evaluating combustion noise on-board a vehicle. The radiated noise can be evaluated through a proper in-cylinder pressure signal processing. Even though in-cylinder pressure sensor on-board installation is still uncommon, it is believed that in-cylinder pressure measurements will be regularly available on-board thanks to the newly developed piezo-resistive sensors. In order to set-up the methodology, several experimental tests have been performed on a 1.3 liter Diesel engine mounted in a test cell. The engine was run, in each operating condition, both activating and deactivating pre-injections, since pre-injections omission usually produces a decrease in pollutant emissions production (especially in particulate matter) and a simultaneous increase in engine noise. The investigation of the correlation between combustion process and engine noise can be used to set up a closed-loop algorithm for optimal combustion control based on engine noise prediction.


2021 ◽  
Vol 11 (15) ◽  
pp. 6749
Author(s):  
Zhifeng Xie ◽  
Ao Wang ◽  
Zhuoran Liu

The cooling system is an important subsystem of an internal combustion engine, which plays a vital role in the engine’s dynamical characteristic, the fuel economy, and emission output performance at each speed and load. This paper proposes an economical and precise model for an electric cooling system, including the modeling of engine heat rejection, water jacket temperature, and other parts of the cooling system. This model ensures that the engine operates precisely at the designated temperature and the total power consumption of the cooling system takes the minimum value at some power proportion of fan and pump. Speed maps for the cooling fan and pump at different speeds and loads of engine are predicted, which can be stored in the electronic control unit (ECU). This model was validated on a single-cylinder diesel engine, called the DK32. Furthermore, it was used to tune the temperature of the water jacket precisely. The results show that in the common use case, the electric cooling system can save the power of 255 W in contrast with the mechanical cooling system, which is about 1.9% of the engine’s power output. In addition, the validation results of the DK32 engine meet the non-road mobile machinery China-IV emission standards.


2021 ◽  
Vol 11 (12) ◽  
pp. 5430
Author(s):  
Paolo Neri ◽  
Alessandro Paoli ◽  
Ciro Santus

Vibration measurements of turbomachinery components are of utmost importance to characterize the dynamic behavior of rotating machines, thus preventing undesired operating conditions. Local techniques such as strain gauges or laser Doppler vibrometers are usually adopted to collect vibration data. However, these approaches provide single-point and generally 1D measurements. The present work proposes an optical technique, which uses two low-speed cameras, a multimedia projector, and three-dimensional digital image correlation (3D-DIC) to provide full-field measurements of a bladed disk undergoing harmonic response analysis (i.e., pure sinusoidal excitation) in the kHz range. The proposed approach exploits a downsampling strategy to overcome the limitations introduced by low-speed cameras. The developed experimental setup was used to measure the response of a bladed disk subjected to an excitation frequency above 6 kHz, providing a deep insight in the deformed shapes, in terms of amplitude and phase distributions, which could not be feasible with single-point sensors. Results demonstrated the system’s effectiveness in measuring amplitudes of few microns, also evidencing blade mistuning effects. A deeper insight into the deformed shape analysis was provided by considering the phase maps on the entire blisk geometry, and phase variation lines were observed on the blades for high excitation frequency.


Author(s):  
Mustafa Babagiray ◽  
Hamit Solmaz ◽  
Duygu İpci ◽  
Fatih Aksoy

In this study, a dynamic model of a single-cylinder four-stroke diesel engine has been created, and the crankshaft speed fluctuations have been simulated and validated. The dynamic model of the engine consists of the motion equations of the piston, conrod, and crankshaft. Conrod motion was modeled by two translational and one angular motion equations, by considering the kinetic energy resulted from the mass moment of inertia and conrod mass. Motion equations involve in-cylinder gas pressure forces, hydrodynamic and dry friction, mass inertia moments of moving parts, starter moment, and external load moment. The In-cylinder pressure profile used in the model was obtained experimentally to increase the accuracy of the model. Pressure profiles were expressed mathematically using the Fourier series. The motion equations were solved by using the Taylor series method. The solution of the mathematical model was performed by coding in the MATLAB interface. Cyclic speed fluctuations obtained from the model were compared with experimental results and found compitable. A validated model was used to analyze the effects of in-cylinder pressure, mass moment of inertia of crankshaft and connecting rod, friction, and piston mass. In experiments for 1500, 1800, 2400, and 2700 rpm engine speeds, crankshaft speed fluctuations were observed as 12.84%, 8.04%, 5.02%, and 4.44%, respectively. In simulations performed for the same speeds, crankshaft speed fluctuations were calculated as 10.45%, 7.56%, 4.49%, and 3.65%. Besides, it was observed that the speed fluctuations decreased as the average crankshaft speed value increased. In the simulation for 157.07, 188.49, 219.91, 251.32, and 282.74 rad/s crankshaft speeds, crankshaft speed fluctuations occurred at rates of 10.45%, 7.56%, 5.84%, 4.49%, and 3.65%, respectively. The effective engine power was achieved as 5.25 kW at an average crankshaft angular speed of 219.91 rad/s. The power of friction loss in the engine was determined as 0.68 kW.


Sign in / Sign up

Export Citation Format

Share Document