Study of Toluene Removal by Bipolar Corona Discharge Coupled with Photocatalytic

2014 ◽  
Vol 955-959 ◽  
pp. 2357-2361
Author(s):  
Hai Feng Chen

Experimental study the degradation efficiency of toluene by bipolar corona discharge coupled with TiO2 photocatalysis. Bipolar corona discharge can degrade the toluene efficiently and rapidly, the final products are mainly carbon dioxide and water. Toluene removal efficiency reduces when the initial concentration of toluene increasing, while toluene removal quantity is increased. Removal of toluene decreases with the gas flow rate increasing, the removal quantity first increases and then decreases. Bipolar corona discharge and a photocatalytic coupling can inprove the degradation efficiency further. Increase of the applied voltage help to improve the removal of toluene, and also to improve the coupling effect of the photocatalyst. In optimized conditions, the removal efficiency of toluene can be more than 90%. The chemical reaction process of the toluene oxidation and the TiO2 catalysis mechanism are discussed. It is pointed out that the OH* produced by corona discharge has important significance for rapid oxidation of toluene.

2013 ◽  
Vol 781-784 ◽  
pp. 1637-1645 ◽  
Author(s):  
Ting Jun Ma ◽  
Yi Qing Xu

The degradation effectiveness and reaction kinetics of representative organophosphorus (OP) pesticide in a packed-bed plasma reactor have been studied. Important parameters, including peak voltage, pulse frequency, gas-flow rate, initial concentration, diameter of catalyst particles, and thickness of catalyst bed which influences the removal efficiency, were investigated. Experimental results indicated that rogor removal efficiency as high as 80% can be achieved at 35 kV with the gas flow rate of 800 mL/min and initial concentration of 11.2 mg/m3.The removal efficiency increased with the increase of pulsed high voltage, and pulse frequency, the decrease of the diameter of catalyst particles and the thickness of catalyst bed. Finally, a model was established to predict the degradation of the rogor, which generally can simulate the experimental measurements to some degree.


2019 ◽  
Vol 960 ◽  
pp. 115-121
Author(s):  
Zhan Guo Li ◽  
Hong Jie Zhao

The removal of trichloroethylene (TCE) by corona discharge plasma was investigated. The influences of initial concentration, gas flow rate, injection of water vapor and ozone (O3) on removal efficiency were discussed. The results show that removal efficiency reduces with the initial concentration and gas flow rate increasing. A proper quantity of water vapor injection can improve the removal efficiency, but which is not always increased, due to the electronegative characteristic of water molecule. The maximum removal efficiency of 90.7% can be obtained in wet air flow with relative humidity of 70.6%. The removal efficiency increases obviously with O3 injection. The decomposition products are 2,2-Dichloroacetyl chloride (CHCl2COCl), carbonyl chloride (COCl2), hydrogen chloride (HCl) and carbon dioxide (CO2), based on which the decomposition mechanism is discussed. The oxygen chain reaction is the primary decomposition mechanism, and high energy electrons and active oxygen species play a leading role in the decomposition process. Therefore, removal efficiency of TCE can be improved greatly when water vapor and O3 is injected.


2013 ◽  
Vol 781-784 ◽  
pp. 55-58 ◽  
Author(s):  
Hong Jie Zhao ◽  
Zhen Hu ◽  
Zhan Guo Li

The Dielectric Barrier Discharge plasma (DBD) plasma was used to treat Diisopropyl fluorophosphate (DFP, a stimulant of sarin) in the air. The influence factors of degradation efficiency, including power, carrier gas flow velocity and initial concentration of DFP were investigated. As a result, the degradation efficiency increased with the power increasing. The degradation efficiency increased fastly when the power less than 105W, but slowly when the power more than 105W. The degradation efficiency decreased obviously with the carrier gas flow velocity increasing, because the time of DFP stayed in plasma reactor decreased and the concentration of DFP increased. The degradation efficiency rose firstly and then fell with the initial DFP increasing, when the initial concentration was less than 80 mg/m3, but decreased with the the initial concentration increasing, when the initial concentration was more than 80 mg/m3. The main products were acetone, isopropanol, phosphoric acid, pyrophosphoric acid, carbon dioxide and water, analyzed by GC-MS. Reaction mechanism was discussed according to degradation products.


2012 ◽  
Vol 573-574 ◽  
pp. 538-541
Author(s):  
Yan Ping Duan ◽  
Sven Geissen ◽  
Ling Chen

Ozonation of clofibric acid (CA) in aqueous solution was carried out under continuous operation in a cascade bubble column. The influence of operation parameters including initial CA concentration, gas flow rate, liquid flow rate and pH on the removal of CA and TOC was investigated. The results indicated that ozonation could be used to effectively remove CA from water. Increasing the initial CA concentration resulted in a decrease of the CA and TOC removal efficiency. A comparison of CA removal efficiency and ozone utilization between cascade and conventional bubble column indicated that cascade bubble column was an effective way for increasing the solubility ozone in the reactor.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1169
Author(s):  
Feng Chen ◽  
Dezheng Yang ◽  
Feng Yu ◽  
Yang Kun ◽  
Ying Song

In this work, the azoxystrobin removal in water by using a micro-size discharge array was investigated, and the removal efficiency can reach as high as 98.1% after 9 min plasma treatment as well as the energy utilization being only 0.73 g/(kW·h). Based on the relationship between the generation of gas bubbles and parameters of gas-liquid discharge, it was found that the variation of applied voltage, gas flow rate and initial solution temperature could cause particle number change, mass transfer rate change and the mass transfer time change, which significantly affected the practical applications at last. The experimental results indicated that when gas flow rate was 0.7 SLM (Standard Liter per Minute) and the initial solution temperature was 297 K with the applied voltage of 8 kV and discharge frequency of 6 kHz, the removal efficiency of azoxystrobin achieved maximum. Based on the analysis results of liquid mass spectrometry, the removal pathways of azoxystrobin were supposed by the decomposed by-products. Toxicity tests indicated that the decomposed products were safe and non-toxic. So, this study may reveal an azoxystrobin degradation mechanism and provide a safe, reliable and effective way for azoxystrobin degradation.


2019 ◽  
Vol 2 (2) ◽  
pp. 45-54 ◽  
Author(s):  
Majid Bagheri Hosseinabadi ◽  
Shahnaz Timoori ◽  
Ali Faghihi Zarandi

A new synthesized sorbent based on functionalizing graphene with N-Phenyl-3-aminopropyl trimethoxy silane (G-PhAPTMS, C12H21NO3Si), was developed as a novel sorbent for removal of toluene from air by sorbent gas extraction procedure (SGEP). By proposed method, the removal efficiency of G-PhAPTMS was compared with other sorbents such as activated carbon (AC), graphene (G) and graphene oxide (GO). The standard gas of toluene generated in pure air with different concentrations and the effects of parameters such as temperature (10-90 °C), flow rate (50-500 mL min-1) and the amount of sorbent (2-30 mg) were investigated. According to the results, increasing the flow rate and temperature had negative effects on the removal efficiency of all sorbents. The highest removal efficiency of G-PhAPTMS was obtained up to 35 °C and less than 250 mL min-1 (>95%).  In optimized conditions, the amount of sorbent for toluene removal was achieved more than 10 mg of G-PhAPTMS.


2015 ◽  
Vol 737 ◽  
pp. 561-564
Author(s):  
Jing Xin Li ◽  
Bao Hui Li ◽  
Zhi Yong Li

The toluene being removed by dielectric barrier discharge (DBD) combined with modified photocatalyst was studied in the paper. Transition metal manganese was doped into crystal lattice of TiO2 in order to improve the activity of photocatalyst, and the optimal doping ratio was confirmed in the study. As one of main factors, the influence on toluene removal efficiency of gas flow rate, initial concentration and electric field intensity was analyzed in the study. Furthermore, the energy efficiency was another important index which had been compared amongγ-Al2O3, TiO2/γ-Al2O3 and Mn-TiO2/γ-Al2O3. The result of study showed that DBD combined with Mn-TiO2/γ-Al2O3 had the best buffer action against increasing of gas flow rate and initial concentration, the energy efficiency had the tendency as Mn-TiO2/γ-Al2O3 > TiO2/γ-Al2O3>γ-Al2O3, and the optimal doping ratio of manganese was 0.01.


2014 ◽  
Vol 884-885 ◽  
pp. 261-265
Author(s):  
Bao Lin Li ◽  
Ming Yu Li ◽  
Hai Hao Liu ◽  
Gang Cao ◽  
Gang Ren ◽  
...  

This paper presented a new method of absorption-oxidation-reduction which used ferrous sulfate solution as absorbent, oxygen as oxidizer and urea as reducer to remove NOX from flue gas based on the properties of Fe2+, NO, [Fe (NO)]2+ and urea. These properties included that Fe2+ and NO could produce [Fe (NO)]2+, furthermore [Fe (NO)]2+ was easy to be oxidized by O2, as well as urea can reduce HNO2 and HNO3 in the absorption liquid. This research was to discuss its absorption and removal mechanism with the influence of the initial urea concentration, pH value, initial NOX concentration and gas flow rate on the NOX removal efficiency. The results showed that the removal efficiency of NOX would increase when the initial concentration of urea and NOX increased, while the pH value and gas flow rate decreased.


Author(s):  
Zhang Ruo-Bing ◽  
Wu Yan ◽  
Li Jie ◽  
Li Guo-Feng ◽  
Li Teng-Fei ◽  
...  

AbstractResults obtained using a bipolar pulsed DBD reactor for Indigo Carmine (IC) water treatment are reported in this investigation. Effects of such parameters as gas flow rate, solution conductivity, pulse repetitive rate and ect., on color removal efficiency of IC solution were studied. The results showed that color removal efficiency was greatly enhanced by bubbling air into the reactor. Decolorization efficiency of the reactor increased with the increase of the pulse repetitive rate, decreased with the increase of the initial solution conductivity and gap distance. In addition, concentrations of ozone in the effluent gases and hydroxyl peroxide in the aqueous phase were determined and their functions on the decolorization were analyzed.


2019 ◽  
Vol 57 (5) ◽  
pp. 604-608
Author(s):  
Le Cao Cuong ◽  
Nguyen Hoang Nghi ◽  
Tran Vinh Dieu ◽  
Doan Thi Yen Oanh ◽  
Dang Duc Vuong

Sign in / Sign up

Export Citation Format

Share Document