Adsorption Behavior of Phenol in Aqueous Solution on MCM-41 Grafted by Different Functional Groups

2014 ◽  
Vol 955-959 ◽  
pp. 74-79
Author(s):  
Xiao Jun Sun ◽  
Xiao Chun Yan ◽  
Yu Jie Feng ◽  
Xian Bin Liu

Four types of organo-functionalized mesoporous silicas were synthesized by post-grafting method, and characterized by powder X-ray diffraction, nitrogen adsorption/desorption and fourier transform infrared spectroscopy. In addition, adsorption behaviors of the prepared material modified with different functional groups were studied by adsorption of phenol in aqueous solution. When the concentration of phenol was 800 mg/L, the equilibrium adsorption capacity of N-aminoethyl-γ-aminopropyl-MCM-41, aminopropyl-MCM-41, mercaptopropyl-MCM-41 and propyl-MCM-41 was respectively as 2.5 times, 2.2 times, 1.9 times, and 1.7 times as that of MCM-41. It was due to the introduction of organo-functional groups, changing the polarity of the channel surface, and increasing the hydrophobic properties. N-aminoethyl-γ-aminopropyl and aminopropyl groups could generate acid-base interactions with phenol, therefore, their adsorption capacity increased much more. Besides, the pH value of the solution could significantly affect the adsorption amount of phenol on samples. The result showed that with the increase of pH, the adsorption amount of phenol increased at first, and then decreased. The maximum adsorption amount of all the prepared materials occurred at about pH value of 6.

2015 ◽  
Vol 18 (1) ◽  
Author(s):  
Zhaoqi Pan ◽  
Junyu Zeng ◽  
Bingyan Lan ◽  
Laisheng Li

AbstractArgentum-loaded MCM-41 (Ag/MCM-41) was synthesized successfully by a hydrothermal method and used as a catalyst for the ozonation of p-chlorobenzoic acid (p-CBA) in aqueous solution. Ag/MCM-41 was characterized by low angle X-ray diffraction (XRD), nitrogen adsorption-desorption and transmission electron microscopy (TEM). Characterizations suggest that the prepared samples retained a highly regulated mesopores of hexagonal structure and a high BET surface area. The influences of argentum content, initial pH, reaction temperature on the catalytic ozonation were also evaluated. Ag/MCM-41/O


2013 ◽  
Vol 68 (3) ◽  
pp. 658-664 ◽  
Author(s):  
Tingchao Yu ◽  
Chao Zeng ◽  
Miaomiao Ye ◽  
Yu Shao

A novel kind of iron oxide supported on carbon nanotubes (CNTs) was prepared for adsorption of antimony (Sb)(III) in aqueous solution. The iron (III) oxide (Fe2O3)-modified CNTs were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption–desorption and Fourier transform infrared spectrometer. Parameters affecting the adsorption efficiencies, including solution pH value, initial Sb(III) concentration, adsorbent dosage, adsorption time and temperature, were investigated. The results indicate that the removal rate of Sb(III) by Fe2O3-modified CNTs is 99.97% under the initial Sb(III) concentration of 1.5 mg/L, adsorbents dosage of 0.5 g/L, temperature of 25 oC and pH value of 7.00, which is 29.81% higher than that of the raw CNTs. The adsorption capacity increased correspondingly from 3.01 to 6.23 mg/g. The equilibrium adsorption data can be fitted to the Freundlich adsorption isotherm. In addition, it has been found that the solution pH values and adsorption temperatures have no significant influence on Sb(III) removal.


2021 ◽  
Vol 22 (7) ◽  
pp. 3447
Author(s):  
Sihan Feng ◽  
Xiaoyu Du ◽  
Munkhpurev Bat-Amgalan ◽  
Haixin Zhang ◽  
Naoto Miyamoto ◽  
...  

Chitosan (CS) modified with ethylenediamine tetraacetic acid (EDTA) was further modified with the zeolite imidazole framework (ZIF-8) by in situ growth method and was employed as adsorbent for the removal of rare-earth elements (REEs). The material (EDTA–CS@ZIF-8) and ZIF-8 and CS were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and nitrogen adsorption/desorption experiments (N2- Brunauer–Emmet–Teller (BET)). The effects of adsorbent dosage, temperature, the pH of the aqueous solution, contact time on the adsorption of REEs (La(III), Eu(III), and Yb(III)) by EDTA–CS@ZIF-8 were studied. Typical adsorption isotherms (Langmuir, Freundlich, and Dubinin–Radushkevich (D-R)) were determined for the adsorption process, and the maximal adsorption capacity was estimated as 256.4 mg g−1 for La(III), 270.3 mg g−1 for Eu(III), and 294.1 mg g−1 for Yb(III). The adsorption kinetics results were consistent with the pseudo-second-order equation, indicating that the adsorption process was mainly chemical adsorption. The influence of competing ions on REE adsorption was also investigated. After multiple cycles of adsorption/desorption behavior, EDTA–CS@ZIF-8 still maintained high adsorption capacity for REEs. As a result, EDTA–CS@ZIF-8 possessed good adsorption properties such as stability and reusability, which have potential application in wastewater treatment.


NANO ◽  
2020 ◽  
Vol 15 (04) ◽  
pp. 2050047
Author(s):  
Yanhong Wang ◽  
Xiuli Wang ◽  
Cuihong Wu ◽  
Xiaomei Wang ◽  
Xu Zhang

A hybrid adsorbent with inverse opal (IO) structure was prepared for removing Cd(II) from aqueous solution. The functional polymeric chains were grafted from the pore wall of IO silica to prepare the porous hybrid material by surface-initiated atom-transfer radical polymerization. Furthermore, the amidation reaction was carried out to obtain diethylenetriamine-modified hybrid adsorbent (IO SiO2-g-PAA-DETA). Batch adsorption of removing Cd(II) onto IO SiO2-g-PAA-DETA was studied as the effect of solution pH, adsorbent doses, contact time, ionic concentration, and temperature. When the grafted amount was 73%, the maximum adsorption capacity was obtained. The optimum adsorbent dose and pH value for adsorbing Cd(II) were found to be 5[Formula: see text]g/L and 0.5[Formula: see text]g/L, respectively. The adsorption capacity was almost unaffected by Na[Formula: see text] at low concentrations. The adsorption data was depicted by the corresponding models and the results displayed that adsorbing Cd(II) on IO SiO2-g-PAA-DETA followed the Freundlich and pseudo-first-order model. In addition, after six adsorption–desorption cycles, IO adsorbent could remain above 80% of the first adsorption ability while it was washed using 0.025[Formula: see text]M EDTA.


2019 ◽  
Vol 128 (1B) ◽  
pp. 5
Author(s):  
Nguyễn ĐỨC Vũ Quyên ◽  
Trần Ngọc Tuyền ◽  
Đinh Quang Khiếu ◽  
Đặng Xuân Tín ◽  
Bùi Thị Hoàng Diễm ◽  
...  

Carbon nanotubes (CNTs) synthesized by chemical vapour deposition without using hydrogen were oxidized with 0.1 M potassium permanganate at 40<sup>o</sup>C for 2 hours and exhibited high Cu<sup>II</sup> adsorption capacity from aqueous solution. X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscope (SEM), transmission electron microscope (TEM) and nitrogen adsorption/desorption isotherms were used to characterize the oxidized CNTs. After oxidizing, the obtained CNTs were used to remove Cu<sup>II</sup> from aqueous solution. With Cu<sup>II</sup> initial concentration of 20 mg.L<sup>-1</sup>, at pH of 4 and adsorbent dosage of 0.2 g.L<sup>-1</sup>, the oxidized CNTs exhibited high Cu<sup>II</sup> adsorption ability with maximum adsorption capacity of 174.4 mg.g<sup>-1</sup>.


2015 ◽  
Vol 1130 ◽  
pp. 685-688
Author(s):  
Rui Yi Fan ◽  
Qing Ping Yi ◽  
Qing Lin Zhang ◽  
Zheng Rong Luo

A biosorbent was prepared by treating the persimmon (Diospyros kaki Thunb.) fallen leaves with sodium hydroxide (NaOH). The NaOH concentration and stirring period for the preparation of the biosorbent were adjusted to optimise the Cd(I) adsorption capacity of the biosorbents. Removal of highly toxic Cadmium metal ions from water system using the optimal biosorbent named ‘NPFL’ was investigated using a mimic industrial column. The result showed that NPFL could remove Cd(II) in large quantities from aqueous solution with coexisting metal ions. The raw material, NPFL and Cd(II) loaded NPFL were characterized by SEM-EDS. The reusability of NPFL was also studied by batch adsorption-desorption test.


2007 ◽  
Vol 119 ◽  
pp. 211-214 ◽  
Author(s):  
Byeoung Ku Kim ◽  
Young Seak Lee ◽  
Seung Kon Ryu ◽  
Byung Joo Kim ◽  
Soo Jin Park

In this work, to introduce polar functional groups on carbon surfaces, activated carbon fibers (ACFs) were treated by nitric acid in order to enhance the adsorption capacity of propylamine which was one of toxic gases in cigarette smoke. It was found that the polar functional groups were predominantly increased up to 2.0 M of nitric acid, resulting in the increase of total surface acidity. It was found that the adsorption amount of propylamine of the modified ACFs was increased around 17% after a nitric acid treatment. From the XPS results, it was observed that propylamine was reacted with strong or weak polar (acidic) groups, such as COOH, -COO or OH existed on the ACF surfaces.


2020 ◽  
Vol 9 (3) ◽  
pp. 9-14
Author(s):  
Hao Pham Van ◽  
Linh Ha Xuan ◽  
Oanh Phung Thi ◽  
Hong Phan Ngoc ◽  
Huy Nguyen Nhat ◽  
...  

This report presents the effect of synthesis conditions on the synthesis of graphene nanosheets via electrochemical exfoliation method for adsorbing methylene blue from aqueous solution. Oxygen-containing functional groups and defects in the material were characterized by Raman and X-ray photoelectron spectroscopy (XPS). As a result, by using voltage of 15 V, (NH4)2SO4 (5%, 250 mL) and KOH (7.5%, 250 mL), the obtained material showed the highest MB adsorption capacity due to the high densities of oxygen-containing groups and defects comparison to other conditions.


2012 ◽  
Vol 518-523 ◽  
pp. 2099-2103
Author(s):  
Guang Zhou Qu ◽  
Hai Bing Ji ◽  
Ran Xiao ◽  
Dong Li Liang

The activated carbon fiber (ACF) was treated by different concentration nitric acid (HNO3) and hydrogen peroxide (H2O2) oxidization to enhance its adsorption capacity to hexavalent chromium (Cr6+) ion. The adsorption amount and adsorption kinetics of Cr6+ion on ACFs, and the surface chemical groups were investigated. The results showed that the modified ACFs with 1% HNO3and 10% H2O2had a better adsorption capacity, respectively. The adsorption amount of ACFs was affected strongly solution pH value, and decreased significantly with increasing of the pH value. The adsorption kinetics indicated that the adsorption rates of Cr6+ ion on different modified ACFs were well fitted with the pseudo-second-order kinetic model. After 1% HNO3and 10% H2O2modification, respectively, the total acidic oxygen-containing groups on ACFs surface had an increase obviously, which might be enhance the adsorption amount of Cr6+ion on ACFs.


2018 ◽  
Vol 5 (1) ◽  
pp. 171662 ◽  
Author(s):  
Bin Feng ◽  
Wenzhong Shen ◽  
Liyi Shi ◽  
Shijie Qu

Owing to the unique microporous structure and high specific surface area, porous carbon could act as a good carrier for functional materials. In this paper, polyacrylonitrile (PAN)-based porous carbon materials (PPC-0.6-600, PPC-0.8-600, PPC-0.6-800 and PPC-0.8-800) were prepared by heating KOH at 600°C and 800 o C for the removal of Cr(VI) from aqueous solution. The adsorbent was characterized by the techniques of Fourier transform infrared spectroscopy (FT-IR), elementary analysis, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and N 2 adsorption techniques. The results showed that the adsorption capacity increased with decreasing pH value of the initial solution. The adsorption capacity of Cr(VI) on PPC-0.8-800 was much greater than that on other materials, and maximum adsorption capacity were calculated to be 374.90 mg g −1 . Moreover, PPC-0.8-800 had superior recyclability for the removal of Cr(VI) from wastewater, about 82% of its initial adsorption capacity was retained even after five cycles. The result of kinetic simulation showed that the adsorption of Cr(VI) on the PAN-based porous carbon could be described by pseudo-second-order kinetics. The adsorption process was the ionic interaction between protonated amine groups of PPC and HCrO 4 - ions.


Sign in / Sign up

Export Citation Format

Share Document