Effect of La and La+Sr on Structure and Properties of ZL101A

2010 ◽  
Vol 97-101 ◽  
pp. 429-436 ◽  
Author(s):  
Guo Fa Mi ◽  
Ying Wang ◽  
Tao Wen

After heat treatment, the structures and properties of ZL101A alloy with different La and La+Sr contents were studied. The results show that a significant modifying effect can be achieved in ZL101A in metal mould casting. The Si phase in the alloy becomes finer and the average alloy grain size is reduced from 3 mm to 1 mm with La addition 0.6%, which is mainly attributed to the enrichment of La at the eutectic front. The tensile strength and elongation increased with the increasing of La addition. However, excessive amount of La will have negative effects on the tensile strength and elongation. Mixed 0.2% La and 0.015% Sr results in further refined average grain down to 0.5mm, exhibiting improved strength and elongation properties.

2017 ◽  
Vol 898 ◽  
pp. 124-130 ◽  
Author(s):  
Shu Min Xu ◽  
Xin Ying Teng ◽  
Xing Jing Ge ◽  
Jin Yang Zhang

In this paper, the microstructure and mechanical properties of the as-cast and heat treatment of Mg-Zn-Nd alloy was investigated. The alloy was manufactured by a conventional casting method, and then subjected to a heat treatment. The results showed that the microstructure of as-cast alloy was comprised of α-Mg matrix and Mg12Nd phase. With increase of Nd content, the grain size gradually decreased from 25.38 μm to 9.82 μm. The ultimate tensile strength and elongation at room temperature of the Mg94Zn2Nd4 alloy can be reached to 219.63 MPa and 5.31%. After heat treatment, part of the second phase dissolved into the magnesium matrix and the grain size became a little larger than that of the as-cast. The ultimate tensile strength was declined by about 2.5%, and the elongation was increased to 5.47%.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2460 ◽  
Author(s):  
Jelena Horky ◽  
Abdul Ghaffar ◽  
Katharina Werbach ◽  
Bernhard Mingler ◽  
Stefan Pogatscher ◽  
...  

In this study, two biodegradable Mg-Zn-Ca alloys with alloy content of less than 1 wt % were strengthened via high pressure torsion (HPT). A subsequent heat treatment at temperatures of around 0.45 Tm led to an additional, sometimes even larger increase in both hardness and tensile strength. A hardness of more than 110 HV and tensile strength of more than 300 MPa were achieved in Mg-0.2Zn-0.5Ca by this procedure. Microstructural analyses were conducted by scanning and transmission electron microscopy (SEM and TEM, respectively) and atom probe tomography (APT) to reveal the origin of this strength increase. They indicated a grain size in the sub-micron range, Ca-rich precipitates, and segregation of the alloying elements at the grain boundaries after HPT-processing. While the grain size and segregation remained mostly unchanged during the heat treatment, the size and density of the precipitates increased slightly. However, estimates with an Orowan-type equation showed that precipitation hardening cannot account for the strength increase observed. Instead, the high concentration of vacancies after HPT-processing is thought to lead to the formation of vacancy agglomerates and dislocation loops in the basal plane, where they represent particularly strong obstacles to dislocation movement, thus, accounting for the considerable strength increase observed. This idea is substantiated by theoretical considerations and quenching experiments, which also show an increase in hardness when the same heat treatment is applied.


2005 ◽  
Vol 495-497 ◽  
pp. 907-912 ◽  
Author(s):  
Suk Hoon Kang ◽  
Hee Suk Jung ◽  
Woong Ho Bang ◽  
Jae Hyung Cho ◽  
Kyu Hwan Oh ◽  
...  

This paper studies the microstructure of drawn gold wires to equivalent strain of 10 and to equivalent strain of 8.5 then heat-treated. The texture of gold wire drawn to strain of 10 is mainly composed of <100> and <111> fibers. Tensile strength of the gold wire increases with <111> fiber fraction, while the grain size does not appear to affect the tensile property. With an exception at heat treatment at 600oC, the texture of gold wire drawn the strain of 8.5 is replaced with <100> fiber component by heat treatment process at 400~700oC. Heat treatment at 600oC produces <110> fiber or <112> fiber, depending upon annealing time.


2016 ◽  
Vol 61 (2) ◽  
pp. 475-480
Author(s):  
K. Bolanowski

Abstract The paper analyzes the influence of different heat treatment processes on the mechanical properties of low-alloy high-strength steel denoted by Polish Standard (PN) as 10MnVNb6. One of the findings is that, after aging, the mechanical properties of rolled steel are high: the yield strength may reach > 600 MPa, and the ultimate tensile strength is > 700 MPa. These properties are largely dependent on the grain size and dispersion of the strengthening phase in the ferrite matrix. Aging applied after hot rolling contributes to a considerable rise in the yield strength and ultimate tensile strength. The process of normalization causes a decrease in the average grain size and coalescence (reduction of dispersion) of the strengthening phase. When 10MnVNb6 steel was aged after normalization, there was not a complete recovery in its strength properties.


2018 ◽  
Vol 913 ◽  
pp. 109-117 ◽  
Author(s):  
Qing Yun Zhao ◽  
Si Rui Cheng ◽  
Li Dong Wang ◽  
Li Min Dong ◽  
Feng Lei Liu

The effects of heat treatment on microstructure and mechanical properties of Ti-38644 alloy were investigated by scanning electron microscope (SEM) and transmission electron microscopy (TEM) as well as uniaxial tensile test. The results show that when the solution temperature is lower than 845°C, the microstructure of Ti-38644 alloy is equiaxed β phase with the grain size of 20μm, and the tensile strength is about 960MPa. As raising solution temperature to 860°C, the grain size of Ti-38644 alloy increases to 100μm and the tensile strength decreased to 870MPa. There are a large number of secondary α phase precipitated from the grain boundaries and within grain of β phase undergoing aging treatment. Secondary α phase coarsens with increasing the aging temperature, leading to the decrease of tensile strength. After solution treatment at 815°C for 1.5h, water quenching plus aging at 520°C for 10h, air cooling, Ti-38644 alloy shows a better mechanical property with the tensile strength 1330MPa, elongation and reduction of area 10% and 45% respectively.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 173 ◽  
Author(s):  
Xin He ◽  
Qinglin Pan ◽  
Hang Li ◽  
Zhiqi Huang ◽  
Shuhui Liu ◽  
...  

Three different aging treatments including single-aging, delayed-aging, and pre-aging were carried out on 6082 extruded profiles after solution heat treatment, then their hardness, tensile strength, and microstructure were tested. The experimental results reveal that the properties and microstructure changes during single-aging. Based on this, the negative effects of room temperature delay and the results of short-term pre-aging treatments used in the experiment to improve this phenomenon have been concluded.


2020 ◽  
Vol 9 (1) ◽  
pp. 2100-2102

The surface temperature of hot die steel reaches typically up to 550ºC or above during processes like hot extrusion and casting non-ferrous material. The present paper explores the impact of austenitizing temperature as well as tempering temperature on the tensile strength of hot die steel. Heat treatment is done at three different austenitizing temperatures of 1010ºC, 1030ºC, and 1050ºC, followed by tempering done at two different temperatures of 540ºC and 580°C. Tempering is done twice for two hours. Metallographic grinding, polishing, and then etching using 2% Nital is done to investigate the microstructure of hot die steel with respect to its heat treatment. It is found that the grain size of hot die steel increases with an increase in austenitizing temperature. The impact on tensile strength of hot die steel for its heat treatment is examined by conducting the uniaxial tensile test to fracture. And investigation of the morphology of the fracture surface produced after the tensile test is done. It was found that hot die steel with large grain size exhibits lesser tensile strength. Whereas, the one having smaller grain has higher tensile strength that is found to be in accordance with the Hall-Patch equation


2021 ◽  
pp. 122-131
Author(s):  
V.N. Gadalov ◽  
V.R. Petrenko ◽  
E.A. Filatov ◽  
I.V. Vornacheva ◽  
V.E. Dedenko

A study of the structure and properties of castings made with the use of various modifiers has been carried out. It was found that when the alloys are modified with titanium carbonitride and all used modifiers except tungsten carbide, the grain size decreases, and carbide precipitates are evenly distributed, contributing to an increase in mechanical properties. Using the method of differential thermal analysis, the critical temperatures at which phase transformations occur in the cast ZhS3DK alloy and its analogs with modifiers have been established. The modes of heat treatment of modified cast heat-resistant alloys of the ZhS3DK type have been specified.


2013 ◽  
Vol 747-748 ◽  
pp. 251-256 ◽  
Author(s):  
Yan Chang Zhang ◽  
Sha Luo ◽  
Qing Qing Zhang ◽  
Xiao Qing Xu ◽  
Tie Tao Zhou

In this paper, a new biomedical Mg-Li alloy for the improvement of the comprehensive mechanical properties by micro-alloying and processing to meet the need of mechanical properties of biomedical materials. And the Mg-Li (Mg-Li-Al-Zn-Ca-Sr) alloy's processing and heat treatment were investigated in detail. The crystal texture of cast state, forged state and rolled state were observed and analyzed by OM, XRD and SEM. The mechanical properties of every stage were tested as well. The results showed that the grain size was refined obviously by the concentrating of Ca and Sr in the grain boundary. With the increase of rolling lane, the second phase's distribution was changed to a scattered state gradually from the reunion state. The tensile strength of the forged alloy was improved as well as its elongation after cold rolling and with rolled heat treatment process. The tensile strength reached 220MPa and the elongation reach 22%, which might meet the demand of cardiovascular stents mechanics.


2017 ◽  
Vol 726 ◽  
pp. 132-136 ◽  
Author(s):  
Liang Li ◽  
Ke Jian ◽  
Yi Fei Wang

The polycarbosilane-derived KD-II SiC fibers were exposed in air at 1200°C for 1-100h and the effect of heat treatment on structures and properties were studied by elemental analysis, XRD, SEM and tensile test. Experimental results indicated that oxygen content, grain size of SiO2 and oxide layer thickness increased, whereas the tensile strength decreased with rising the heat treatment time. When oxidizing over 20h, the amorphous silica crystallized into α-cristobalite and there were cracks on fibers surface and the cross section formed the skin-core structure with oxide layer wrapped inner SiC fibers after oxidizing for 100h. With the same experimental condition for Hi-Nicalon SiC fibers, the differences of oxidation resistance between KD-II and Hi-Nicalon SiC fibers were compared and the oxidation degradation of KD-II SiC fibers was analyzed.


Sign in / Sign up

Export Citation Format

Share Document