Creep Behavior of an AZ91 Magnesium Alloy Reinforced with Aluminum Silicate Short Fibers

2010 ◽  
Vol 97-101 ◽  
pp. 492-495 ◽  
Author(s):  
Jun Tian ◽  
Wen Fang Li ◽  
Li Fa Han ◽  
Ji Hua Peng

Constant stress tensile creep tests were conducted on an AZ 91–25 vol.% aluminum silicate short fiber composite and on an unreinforced AZ 91 matrix alloy. The creep resistance of the composite is shown to be considerably improved compared with the matrix alloy, and the resistance effect is better with the increase of temperature. The steady-state creep rate of the composite is 4.54% of matrix alloy at 473K, and 2.56% of matrix alloy at 573K. The creep strengthening arises mainly from the effective load transfer between plastic flow in the matrix and the fibers. Microstructural investigations by SEM revealed good fiber–matrix interface bonding during creep exposure. Short fibers have a great function in load bearing and transmission load, and greatly hinder the dislocation movement, thus enhancing the creep resistance of the composite. The creep mechanism of the composite is dislocation and grain boundary sliding control.

2011 ◽  
Vol 55-57 ◽  
pp. 257-261
Author(s):  
Jun Tian ◽  
Shou Yan Zhong

Constant stress tensile creep tests were conducted on an AZ 91–25 vol.% Al2O3-SiO2short fiber composite and on an unreinforced AZ 91 matrix alloy. The creep resistance of the reinforced material is shown to be considerably improved compared with the matrix alloy. The creep strengthening arises mainly from the effective load transfer between plastic flow in the matrix and the fibers. Microstructural investigations by SEM revealed good fiber–matrix interface bonding during creep exposure. Short fibers have a great function in load bearing and load transfer, and greatly hinder the dislocation movement, thus enhancing the creep resistance of the composite. Damage and multiple rupture of aluminum silicate short fiber, quality of the interface combination between aluminum silicate short fiber reinforcement and the matrix, are two important factors of the creep deformation microstructure process control of Al2O3-SiO2(sf)/AZ91 composite. The creep mechanism of the composite is dislocation and grain boundary sliding control.


2011 ◽  
Vol 474-476 ◽  
pp. 548-552
Author(s):  
Jun Tian

Constant stress tensile creep tests were conducted on AZ91D–20 vol.%, 25 vol.%, and 30 vol.% Al2O3-SiO2short fiber composites and on an unreinforced AZ91D matrix alloy. The creep resistance of the reinforced materials is shown to be considerably improved compared with the matrix alloy. With the increasing volume fraction of short fibers, the creep resistance of AZ91D composites is improved, and their creep threshold stresses are also increased accordingly. Because of the increasing volume fraction of short fibers, loads of bearing and transmission of short fibers will increase, and thus the creep resistance of AZ91D composites further improves, but the precipitation of β-Mg17Al12precipitate increases in the number, it is easy to soften coarse, so that threshold stress of AZ91D composite does not increase greatly.


2017 ◽  
Vol 37 (2) ◽  
pp. 185-196 ◽  
Author(s):  
Hamid Reza Salehi ◽  
Manouchehr Salehi

Abstract In this work, the effects of nano titania are investigated on mechanical, creep, and viscoelastic behaviors of epoxy resin. For this purpose, 0.25, 0.5, and 1 vol.% of TiO2 nanoparticles were mixed with thermoset epoxy resin by mechanical and ultrasonic homogenizers and then the tensile, creep, and DMTA test samples were fabricated. The results of tensile tests show that the addition of TiO2 nanopowder slightly increased the strength and Young’s modulus of epoxy resin. However, the ultimate tensile strain or the rupture strain of nanocomposites is decreased. In addition, to understand the viscoelastic behavior of nanocomposites, the DMTA and tensile creep tests have been done. Tensile creep test has been done by DMTA and universal test machine. Both results confirmed that the creep resistance of nanocomposites has extensively improved by adding the titania nanoparticles. Variations of storage modulus, loss modulus, and tan (δ) by adding TiO2 nanopowder were examined in two modes of bending and tension. Storage and loss moduli of nanocomposite are considerably increased in all the states, but the storage modulus was more sensitive to TiO2 loading intensity. Thus, test results showed that introduction of TiO2 in the epoxy resin leads to the improvement of mechanical, creep resistance, and viscoelastic properties of nanocomposites. Due to the wide applications of epoxy resins in engineering devices, this method of reinforcement can be practical and useful to overcome some limitations of epoxy resins.


2004 ◽  
Vol 842 ◽  
Author(s):  
Hanliang Zhu ◽  
Dongyi Seo ◽  
Kouichi Maruyama ◽  
Peter Au

ABSTRACTThe microstructural characteristics and creep behavior of two fine-grained XD TiAl alloys, Ti-45Al and 47Al–2Nb–2Mn+0.8vol%TiB2 (at%), were investigated. A nearly lamellar structure (NL) and two kinds of fully lamellar (FL) structures in both alloys were prepared by selected heat treatments. The results of microstructural examination and tensile creep tests indicate that the 45XD alloy with a NL structure possesses an inferior creep resistance due to its coarse lamellar spacing and larger amount of equiaxed γ grains at the grain boundaries, whereas the same alloy in a FL condition with fine lamellar spacing lowers the minimum creep rates. Contrary to 45XD, the 47XD alloy with a NL structure exhibits the best creep resistance. However, 47XD with a FL structure with finer lamellar spacing shows inferior creep resistance. On the basis of microstructural deformation characteristics, it is suggested that the well-interlocked grain boundary and relatively coarse colony size in FL and NL 47XD inhibit sliding and microstructural degradation at the grain boundaries during creep deformation, resulting in better creep resistance. Therefore, good microstructural stability is essential for improving the creep resistance of these alloys.


2008 ◽  
Vol 584-586 ◽  
pp. 846-851 ◽  
Author(s):  
Petr Král ◽  
Jiří Dvořák ◽  
Vàclav Sklenička

Experiments were conducted on an Al-0.2wt.%Sc alloy to evaluate the effect of equalchannel angular pressing (ECAP) on its creep behaviour. ECAP was conducted at room temperature with a die that had an internal angle of 90° between the two parts of the channel. The subsequent extrusion passes were performed by route BC up to 8 ECAP passes. Creep tests in tension were performed on the as-pressed samples at 473 K under an applied stress range between 10 to 50 MPa. For comparison purposes, some creep tests were performed also on the unpressed alloy. Following ECAP and creep testing, samples were prepared for examination by means of transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipped with an electron back scattering diffraction (EBSD) unit. The observation of the surface of the ECAPed samples after creep exposure showed the occurrence of mesoscopic shear bands. The EBSD data reveal that these bands are separated by high angle grain boundaries. The creep resistance of an alloy is a little decreased after one ECAP pass. However, successive ECAP pressing lead to a noticeable decrease of the creep properties. Thus, the Al-0.2wt.%Sc alloy processed by 8 ECAP passes exhibited faster creep rate by about two and/or three orders of magnitude than the unpressed alloy when creep testing at 473 K and at the same applied stress. The detrimental effect of ECAP on the creep resistance is probably a consequence of a synergetic effect of mesoscopic sliding of groups of grains along shear bands, more intensive grain boundary sliding and creep cavitation in creep of the ultrafine-grained material.


2007 ◽  
Vol 353-358 ◽  
pp. 1342-1345 ◽  
Author(s):  
Hai Chang ◽  
Xiao Jun Wang ◽  
Ming Yi Zheng ◽  
Kun Wu

Magnesium matrix composite reinforced with SiC particle was fabricated by compocasting method. The SiCp/AZ91 composite was extruded initially, then subjected to ECAP. The microstructure and tensile properties of the composite at ambient and elevated temperature were investigated. After ECAP, the matrix alloy was significantly refined due to the dynamic recrystallization occurred during ECAP. Both the ambient yield stress and ultimate tensile stress of SiCp/AZ91 were increased after 1-pass and 2-pass ECAP and decreased after 4-pass ECAP. The ECAP processed composite exhibited superplasticity at elevated temperature, which is mainly due to the grain refinement of matrix alloy. The dominant deformation mechanism of the ECAPed composite at high temperature was grain boundary sliding. However, the sliding was prohibited due to the present of SiC particle.


2010 ◽  
Vol 425 ◽  
pp. 217-244 ◽  
Author(s):  
Martin Wenzelburger ◽  
Martin Silber ◽  
Rainer Gadow

The demand for lightweight structures in the automotive and aerospace industry increases permanently, and the importance of lightweight design principles is also increasing in other industrial branches, aiming towards improved energy efficiency and sustainability. Light metals are promising candidates to realize security relevant lightweight components because of their high specific strength; and amongst them, aluminum alloys are the most interesting materials due to their high plasticity and strain to failure, good processability, passivation in oxygen containing atmosphere, and low cost. However, for many applications, their stiffness as well as strength and fatigue behavior at elevated temperature are insufficient. Metal matrix composite (MMC) formation by integration of reinforcements in the form of continuous or discontinuous (short) fibers can yield a high increase in the alloys’ specific mechanical properties at room temperature and at elevated temperature. The integration of fibers with conventional manufacturing techniques like squeeze casting, hot pressing or diffusion bonding leads to restrictions in the component’s geometry. Moreover, these techniques result in elevated process costs mainly caused by long cycle times and the need of additional protective fiber coatings. In the present paper, an alternative method for the manufacturing of aluminum matrix composites is described, combining thermal spraying and semisolid forming (thixoforging) technologies for the formation of fiber prepregs and subsequent forming with simultaneous densification. Therefore, prepregs with the matrix alloy as a thick surface coating on the reinforcement fibers are manufactured in a fast, automated coating process, while reheating, densification and shaping are performed in a separate process, allowing an optimization of both processes towards cycle times and resulting material properties. Continuous fiber and short fiber reinforced aluminum matrix composites are manufactured using woven or parallel arranged continuous fibers, or short fibers as a fleece or fiber paper material. For the coating process, twin-wire electric arc spraying is applied as a well established, cost efficient thermal spray technology. The coating process is optimized towards microstructure of the matrix alloy prior to semisolid forming, which requires a globular alloy microstructure, and reduced fiber damage during the high-temperature liquid melt deposition. The thermally sprayed fine-grained matrix material enables semisolid forming at liquid contents of 40-60 vol% of the alloy, with short flow paths, reduced mechanical loads and short cycle times. Thus, limited fiber damage and residual stresses will occur, leading to good mechanical material properties. A production line for industrial-scale coating of fiber fabric coils in a continuous process is introduced in order to provide prepregs of various fiber-reinforcement materials and fiber architectures; moreover, a winding equipment for simultaneous fiber winding and coating is presented that enables local reinforcement for components with adapted, tailored composite material design.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2044
Author(s):  
Petr Kral ◽  
Jiri Dvorak ◽  
Vaclav Sklenicka ◽  
Zenji Horita ◽  
Yoichi Takizawa ◽  
...  

High-pressure sliding (HPS) and rotary swaging (RS) at room temperature were used to form severely deformed microstructures in martensitic creep-resistant P92 steel. The deformed microstructures contained markedly different ratios of low- and high-angle grain boundaries (LAGBs/HAGBs). The application of the RS method, with an imposed equivalent strain of 1.4, led to the formation of a heterogeneous microstructure with a high number of LAGBs, while the HPS method, with an imposed equivalent strain of 7.8, led to the formation of a relatively homogeneous ultrafine-grained microstructure with a significant predominance of HAGBs. Microstructure analyses after creep testing showed that the microstructure of RS- and HPS-processed P92 steel is quite stable, but a slight coarsening of subgrains and grains during creep testing can be observed. Constant load tensile creep tests at 500 °C and initial stresses ranging from 300 to 900 MPa revealed that the specimens processed by HPS exhibited higher creep strength (slower minimum creep rate) and ductility compared to the coarse-grained and RS-processed P92 steel. However, the HPS-processed P92 steel also exhibited lower values of stress exponent n than the other investigated states of P92 steel. For this reason, the differences in minimum creep rates determined for different states decrease with decreasing values of applied stress, and at applied stresses lower than 500 MPa, the creep resistance of the RS-processed state is higher than the creep resistance of the HPS-processed state.


2020 ◽  
Author(s):  
C. Kale ◽  
S. Srinivasan ◽  
B.C. Hornbuckle ◽  
R.K. Koju ◽  
K. Darling ◽  
...  

2020 ◽  
Vol 72 (10) ◽  
pp. 1153-1158 ◽  
Author(s):  
Yafei Deng ◽  
Xiaotao Pan ◽  
Guoxun Zeng ◽  
Jie Liu ◽  
Sinong Xiao ◽  
...  

Purpose This paper aims to improve the tribological properties of aluminum alloys and reduce their wear rate. Design/methodology/approach Carbon is placed in the model at room temperature, pour 680°C of molten aluminum into the pressure chamber, and then pressed it into the mold containing carbon felt through a die casting machine, and waited for it to cool, which used an injection pressure of 52.8 MPa and held the same pressure for 15 s. Findings The result indicated that the mechanical properties of matrix and composite are similar, and the compressive strength of the composite is only 95% of the matrix alloy. However, the composite showed a low friction coefficient, the friction coefficient of Gr/Al composite is only 0.15, which just is two-third than that of the matrix alloy. Similarly, the wear rate of the composite is less than 4% of the matrix. In addition, the composite can avoid severe wear before 200°C, but the matrix alloy only 100°C. Originality/value This material has excellent friction properties and is able to maintain this excellent performance at high temperatures. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0454/


Sign in / Sign up

Export Citation Format

Share Document