Power Generation Using Oxide Thermoelectric Modules

2006 ◽  
Vol 46 ◽  
pp. 158-167 ◽  
Author(s):  
Ryoji Funahashi ◽  
Saori Urata ◽  
Toshiyuki Mihara ◽  
Naoki Nabeshima ◽  
Kanako Iwasaki

Different versions of thermoelectric unicouples composed of p-type Ca3Co4O9 (Co-349) and n-type LaNiO3 (Ni-113) or CaMnO3 (Mn-113) bulk materials were prepared. In the unicouples p- and n-type legs were connected with Ag electrodes using Ag paste including various oxide powders with various ratios. For the Co-349/Ni-113 unicouples, maximum output power (Pmax) reaches 177mW at a hot side temperature (TH) of 1073K and a temperature differential (ΔT) between TH and cold side temperature of 500K at 6wt% of Co-349 powder. On the other hand, the lowest internal resistance (RI) is observed in a Co-349/Mn-113 unicouple prepared using Ag paste including 3wt% of Mn-113 powder. Thermoelectric modules consisting of 8 pairs of oxide legs were fabricated using the same method with the unicouples. The open circuit voltage (VO) and Pmax increase with increasing TH and reach 0.392 V and 0.314 W, and 0.911 V and 0.233 W at a TH of 1273 K in air for the Co-349/Ni-113 and Co-349/Mn-113 modules, respectively.

2005 ◽  
Vol 886 ◽  
Author(s):  
Ryoji Funahashi ◽  
Toshiyuki Mihara ◽  
Masashi Mikami ◽  
Saori Urata

ABSTRACTA new adhesive material has been developed in order to obtain practically usable thermoelectric modules composed of oxide thermoelectric legs. The thermoelectric module composed of 8-pair oxide legs has been fabricated. Both hot- and cold-sides of the module were covered by alumina plates. Open circuit voltage VO and maximum power Pmax reach 0.38 V and 0.30 W, respectively at 803 K of a hot-side temperature TH and 362 K of a temperature differential ΔT between TH and cold-side temperature TC. Generating power was repeated 11 times at 873-993 K of TH and at 200-290 K of ΔT. The module was cooled down to room temperature after each generation. At third measurement internal resistance RI of the module increased by 30 %. This is due to destruction of junctions because of thermal strain. No deterioration, however, was observed in thermoelectric properties for the oxide legs.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3053 ◽  
Author(s):  
Loise Rissini Kramer ◽  
Anderson Luis Oliveira Maran ◽  
Samara Silva de Souza ◽  
Oswaldo Hideo Ando Junior

The conversion of residual thermal energy into electricity using TEGs (Thermoelectric Generators) arises as a promising technological alternative for increasing energy efficiency and power generation. In order to optimize the performance of TEGs, it is known that the maximum output power is obtained by matching the impedances between the TEG and the connected load. Therefore, the objective of this work is to present the development of a numerical and a simplified analytical model to determine the internal resistance (Rint) and predict the open circuit voltage, charge voltage, current and power values of TEGs. The models have used as reference the thermoelectric module TEHP 1263-1.5 (Thermonamic), with the analytical one being based on the classical theory of electrical circuit analysis and, for the numerical one, a three-dimensional geometric model was developed and the set of equations were solved in the COMSOL Multiphysics® tool by the finite element method. The Rint obtained by the analytical and numerical models were, respectively, 3.157 Ω and 6.027 Ω, and the value supplied by the supplier is 3.154 Ω. Therefore, the analytical model is indicated as a reference to estimate Rint of the TEG, allowing optimizing its use by choosing the load resistance that will result in the maximum power.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7708
Author(s):  
Chenchen Li ◽  
Fan Yang ◽  
Pengfei Liu ◽  
Chaoliang Fu ◽  
Quan Liu ◽  
...  

To improve the energy harvesting efficiency of the piezoelectric device, a stack units-based structure was developed and verified. Factors such as stress distribution, load resistance, loads, and loading times influencing the piezoelectric properties were investigated using theoretical analysis and experimental tests. The results show that the unit number has a negative relationship with the generated energy and the stress distribution has no influence on the power generation of the piezoelectric unit array. However, with a small stress difference, units in a parallel connection can obtain high energy conversion efficiency. Additionally, loaded with the matched impedance of 275.0 kΩ at 10.0 kN and 10.0 Hz, the proposed device reached a maximum output power of 84.3 mW, which is enough to supply the low-power sensors. Moreover, the indoor load test illustrates that the electrical performance of the piezoelectric device was positively correlated with the simulated loads when loaded with matched resistance. Furthermore, the electrical property remained stable after the fatigue test of 100,000 cyclic loads. Subsequently, the field study confirmed that the developed piezoelectric device had novel piezoelectric properties with an open-circuit voltage of 190 V under an actual tire load, and the traffic parameters can be extracted from the voltage waveform.


2013 ◽  
Vol 1490 ◽  
pp. 185-190 ◽  
Author(s):  
Tomoyuki Nakamura ◽  
Kazuya Hatakeyama ◽  
Masahiro Minowa ◽  
Youhiko Mito ◽  
Koya Arai ◽  
...  

ABSTRACTThermoelectric power generation has been attracting attention as a technology for waste heat utilization in which thermal energy is directly converted into electric energy. It is well known that layered cobalt oxide compounds such as NaCo2O4 and Ca3Co4O9 have high thermoelectric properties in p-type oxide semiconductors. However, in most cases, the thermoelectric properties in n-type oxide materials are not as high. Therefore, n-type magnesium silicide (Mg2Si) has been studied as an alternative due to its non-toxicity, environmental friendliness, lightweight property, and comparative abundance compared with other TE systems. In this study, we fabricated π-structure thermoelectric power generation devices using p-type NaCo2O4 elements and n-type Mg2Si elements. The p- and n-type sintering bodies were fabricated by spark plasma sintering (SPS). To reduce the resistance at the interface between elements and electrodes, we processed the surface of the elements before fabricating the devices. The end face of a Mg2Si element was covered with Ni by SPS and that of a NaCo2O4 element was coated with Ag by silver paste and soldering.The thermoelectric device consisted of 18 pairs of p-type and n-type legs connected with Ag electrodes. The cross-sectional and thickness dimensions of the p-type elements were 3.0 mm × 5.0 mm × 7.6 mm (t) and those of the n-type elements were 3.0 mm × 3.0 mm × 7.6 mm (t). The open circuit voltage was 1.9 V and the maximum output power was 1.4 W at a heat source temperature of 873 K and a cooling water temperature of 283 K in air.


2018 ◽  
Vol 281 ◽  
pp. 788-794
Author(s):  
S. Guo ◽  
Ning Su ◽  
Fu Li ◽  
Da Wei Liu ◽  
Bo Li

A novel thermoelectric micro-device was designed with n-type and p-type Bi-Te materials alloys via a template electrodeposition process. The glass template including 250 holes in 10×10 mm2with a thickness of 200~ 400 µm. The diameter of the holes is 50~ 80 µm and the distance of adjacent centers of the holes is 200 µm. According to the design, the performance of heat transference and thermoelectric energy generation are simulated by COMSOL Multiphysics. In order to simplify model, there are 16 units in total, and each unit is made up of 16 (4 × 4) pillars. In the simulation, the largest temperature difference is 7.8K on the conditions of 500 W/m2K in convection heat transfer coefficients and the maximum output potential of the module is 21.7 mV. The maximum output power achieved 96.9 µW under 500 W/m2K of heat transfer coefficient and 10 mA of current. Under ideal conditions, the value of open circuit voltage and maximum output power increases to nine times as the model, but short circuit current remains the same. When the heat transfer coefficient is 500 W/m2K and the current density is 10 mA, the maximum output power of the actual product achieved 871.7 µW.


2012 ◽  
Vol 51 (10S) ◽  
pp. 10NF08 ◽  
Author(s):  
Takahiro Kato ◽  
Takuma Miyake ◽  
Daisuke Tashima ◽  
Tatsuya Sakoda ◽  
Masahisa Otsubo ◽  
...  

2012 ◽  
Vol 622-623 ◽  
pp. 726-733 ◽  
Author(s):  
Weerasak Somkhunthot ◽  
Nuwat Pimpabute ◽  
Tosawat Seetawan

Thin films thermoelectric module fabricated by pulsed-dc magnetron sputtering system using Ca3Co4O9(p-type) and ZnO (n-type) targets of 60 mm diameter and 2.5 mm thickness, which were made from powder precursor, and obtained by solid state reaction. Thin films of p-Ca-Co-O (Seebeck coefficient = 143.85 µV/K, electrical resistivity = 4.80 mΩm, power factor = 4.31 µW/m K2) and n-ZnO (Seebeck coefficient =229.24 µV/K, electrical resistivity = 5.93 mΩm, power factor = 8.86 µW/m K2) were used to make a thermoelectric module, which consist of four pairs of legs connected by copper electrodes (0.5 mm thickness, 3.0 mm width, and 3.0-8.0 mm length). Each leg is 3.0 mm width, 20.0 mm length, and 0.44 µm thickness on a glass substrate of 1.0 mm thickness in dimension 25.0x50.0 mm2. For preliminary test, a module was used to thermoelectric power generation. It was found that the open circuit voltage increased with increasing temperature difference from 3 mV at 5 K up to 20 mV at 78 K. The internal resistance of a module reached a value of 14.52 MΩ. This test indicated that a module can be generated the electrical power. Therefore, it can be used as an important platform for further thin films thermoelectric module research.


2011 ◽  
Vol 71-78 ◽  
pp. 2077-2080 ◽  
Author(s):  
Cui Qiong Yan

A V-trough PV system with polysilicon cell array and super cell array has been constructed and tested. Open-circuit voltage, short-circuit current, output power, fill factor and influence of temperature on V-trough PV concentration system have been analyzed. The results indicate that the output power of 10 pieces of polysilicon cell array is 6.198W and it is 1.21 times as that of non-concentration condition. Maximum output power of V-trough PV system with water cooling increase to 8.28W and power increment rate reach 62.67% compared with the non-concentration PV system. For the super cell array with no water cooling, the maximum output power of V-trough PV system varies from 7.834W to 14.223W. The results of this work provide some experimental support to the applications of the V-trough PV system.


2011 ◽  
Vol 485 ◽  
pp. 169-172 ◽  
Author(s):  
Koya Arai ◽  
Hiroyuki Akimoto ◽  
Tohru Kineri ◽  
Tsutomu Iida ◽  
Keishi Nishio

NaCo2O4and 0.5at%-Sb doped Mg2Si have excellent thermoelectric properties. We tried to fabricate a thermoelectric module composed of these materials and using Ni plates as electrodes. The fine powder of NaCo2O4was prepared by metal-citric acid complex decomposition. 0.5at%-Sb doped Mg2Si bulk was ground to powder and sieved to a powder particle size of 75 micrometers or less. These powders were sintered using spark plasma sintering (SPS) to obtain a body of NaCo2O4and 0.5at%-Sb doped Mg2Si. These thermoelectric materials were connected to the Ni plates by using the SPS method. The whole process took a very short time (less than 2 min) and could be done at low temperature (below 873 K). The open-circuit voltagevalues were 82.7 mV, and the maxima,maximum output currentand maximum output power, for the single module were 212.4 mA and 6.65 mW at ΔT= 470 K.


Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 214 ◽  
Author(s):  
Saburo Tanaka ◽  
Masaki Yamaguchi ◽  
Rikuo Eguchi ◽  
Masayuki Takashiri

Thin-film thermoelectric generators are not widely used mainly because it is difficult to provide a temperature difference (ΔT) within the generators. To solve this problem, in our previous study, we prepared slope-type thin-film thermoelectric generators (STTEGs) using electrodeposition and transferred processes. A thin-film generator including n-type Bi2Te3 and p-type Sb2Te3 thin films was attached on slope blocks made of polydimethylsiloxane. In this study, the slope angle of STTEGs was optimized based on experimental results and computational analyses using computational fluid dynamics (CFD). With the increase in the slope angle, the ΔT began increasing and became saturated at a slope angle of 58°, and this trend was also confirmed by experimental measurements. When the heat source temperature was set at 65 °C, the ΔT computationally reached 26 K at a slope angle of 58°, and the maximum output power was 46.1 nW. Therefore, we demonstrated that the highest performance of STTEGs with an optimal slope angle can be estimated by combining the experimental results and computational analyses.


Sign in / Sign up

Export Citation Format

Share Document