Oxidation Mechanism of ZrB2-SiC Tested in a Solar Furnace above 2200°C

2010 ◽  
Vol 65 ◽  
pp. 124-129
Author(s):  
Anne-Sophie Andreani ◽  
Francis Rebillat ◽  
Angéline Poulon-Quintin

The solar furnace is a heating system based on concentrated sunrays on the material surface. It is an original method for testing ultra-high-temperature ceramics (UHTC) at very high temperature (above 2200°C) in air with an exposure time of several minutes. In this study, the solar flux is 15.5 MW.m-2 with a homogeneous exposed surface of 10 mm2. A large temperature-time composition parameters space is covered producing a large set of oxidized samples. Massive cylindrical specimens of UHTC materials are prepared by spark plasma sintering at 1900°C under a pressure of 100 MPa for 5 minutes. Then, samples are tested in air from 1750°C up to 2400°C with dwell times varied from 1 to 5 min. During oxidation of ZrB2-SiC (20%vol) material, the formed and known complex oxide scale identified from literature is easily reproduced using this method. It consists of a thin outer silica layer and zirconia columnar layer with a region of SiC depleted zone in ZrB2 phase. The impact of the reduction of Si content is quantified and the coating ZrB2-20%vol SiC is tested as protection on C-C composite.

2011 ◽  
Vol 2011 ◽  
pp. 1-12
Author(s):  
Yoshinori Isomoto Oka ◽  
Toshinori Tsumura

The surface degradation of metals in boiler tubes and turbines in high-temperature corrosive environments causes severe problems in fuel combustion power plant systems. High-temperature resistant materials have been recently developed using a thermal barrier coating (TBC) and high-chromium alloys. Oxide films or coatings formed on metal surfaces at high temperatures can sometimes decrease the corrosion rate. However, the damage to the material is often accelerated by the mechanical removal of corrosion products from the material surface. It is therefore very important to investigate the mechanical and adhesive properties of the oxide films or coatings on metal surfaces used in high-temperature environments. This paper introduces a tribological method that uses a single spherical projectile impact at high temperature to measure the mechanical and adhesive properties of oxide films formed on various metal surfaces. Impact tests were performed on the surfaces of oxide films after their growth in a high-temperature furnace, and the deformed or fractured surfaces were observed in order to measure the mechanical and adhesive properties. The mechanical and adhesive properties of an elastic modulus, fracture, and exfoliation stresses were measured using the impact method, and the results depended on the type of metal oxide films and on the high-temperature environment.


Author(s):  
Humberto Silva ◽  
Brantley Mills ◽  
Benjamin Schroeder ◽  
Ryan Keedy ◽  
Kyle Smith

Abstract There is a dearth in the literature on how to capture the uncertainty generated by material surface evolution in thermal modeling. This leads to inadequate or highly variable uncertainty representations for material properties, specifically emissivity when minimal information is available. Inaccurate understandings of prediction uncertainties may lead decision makers to incorrect conclusions, so best engineering practices should be developed for this domain. In order to mitigate the aforementioned issues, this study explores different strategies to better capture the thermal uncertainty response of engineered systems exposed to fire environments via defensible emissivity uncertainty characterizations that can be easily adapted to a variety of use cases. Two unique formulations (one physics-informed and one mathematically based) are presented. The formulations and methodologies presented herein are not exhaustive but more so are a starting point and give the reader a basis for how to customize their uncertainty definitions for differing fire scenarios and materials. Lastly, the impact of using this approach versus other commonly used strategies and the usefulness of adding rigor to material surface evolution uncertainty is demonstrated.


2019 ◽  
pp. 43-48
Author(s):  
Ben Nengjun ◽  
Zhou Pengfei ◽  
Oleksandr Labartkava ◽  
Mykhailo Samokhin

This work involves an analysis of high-chromium high-temperature deformable wieldable nickel alloys for use in GTE repair assemblies. It is shown that the alloys EP868 (VZh98) and Haynes 230 can be used in welded assemblies with an operating temperature of 800-1100 °C. The alloys Nimonic 81, Nimonic 91, IN 935, IN 939, and Nicrotan 2100 GT also have a high potential for use in welded assemblies. They are characterized by a combination of good weldability, high-temperature strength, and resistance to scaling. There have been conducted studies on high-temperature salt corrosion of model nickel alloys. They allowed establishing the patterns of the impact of base metal alloying with chromium, aluminum, titanium, cobalt, tungsten, molybdenum, niobium, tantalum and rare earth metals on the critical temperature of the start of salt corrosion Tcor and the alloy mass loss. It has been established that alloys with a moderate concentration (13-16%) of chromium can possess satisfactory hightemperature corrosion resistance (HTC resistance) under the operating conditions of ship GTE. The HTC resistance of CrAl-Ti alloys improves upon reaching the ratio Ti/Al ˃ 1. Meanwhile, the ratio Ti/Al ˂ 1 promotes the formation of corrosion products with low protective properties. The positive effect of tantalum on the HTC resistance of alloys is manifested at higher test temperatures than that of titanium, and the total content of molybdenum and tungsten in alloys is limited by the condition 8Mo2 – 2W2 = 89. The presence of refractory elements stabilizes the strengthening phase and prevents formation of the ɳ-phase. However, their excess promotes formation of the embrittling topologically close packed (TCP) phases and boundary carbides of an unfavorable morphology. Based on the studies of the HTC resistance, there has been identified a class of model high-temperature corrosionresistant nickel alloys with a moderate or high chromium content (30%), Ti/Al ˃ 1, and a balanced content of refractory and rare-earth elements.


2009 ◽  
Vol 24 (4) ◽  
pp. 821-826
Author(s):  
Hui-Yi TANG ◽  
De-Gui ZHU ◽  
Bo LIU ◽  
Hong-Liang SUN

2020 ◽  
Vol 12 ◽  
Author(s):  
Fang Wang ◽  
Jingkai Wei ◽  
Caixia Guo ◽  
Tao Ma ◽  
Linqing Zhang ◽  
...  

Background: At present, the main problems of Micro-Electro-Mechanical Systems (MEMS) temperature detector focus on the narrow range of temperature detection, difficulty of the high temperature measurement. Besides, MEMS devices have different response characteristics for various surrounding temperature in the petrochemical and metallurgy application fields with high-temperature and harsh conditions. To evaluate the performance stability of the hightemperature MEMS devices, the real-time temperature measurement is necessary. Objective: A schottky temperature detector based on the metal/n-ZnO/n-Si structures is designed to measure high temperature (523~873K) for the high-temperature MEMS devices with large temperature range. Method: By using the finite element method (FEM), three different work function metals (Cu, Ni and Pt) contact with the n-ZnO are investigated to realize Schottky. At room temperature (298K) and high temperature (523~873K), the current densities with various bias voltages (J-V) are studied. Results: The simulation results show that the high temperature response power consumption of three schottky detectors of Cu, Ni and Pt decreases successively, which are 1.16 mW, 63.63 μW and 0.14 μW. The response temperature sensitivities of 6.35 μA/K, 0.78 μA/K, and 2.29 nA/K are achieved. Conclusion: The Cu/n-ZnO/n-Si schottky structure could be used as a high temperature detector (523~873K) for the hightemperature MEMS devices. It has a large temperature range (350K) and a high response sensitivity is 6.35 μA/K. Compared with traditional devices, the Cu/n-ZnO/n-Si Schottky structure based temperature detector has a low energy consumption of 1.16 mW, which has potential applications in the high-temperature measurement of the MEMS devices.


Author(s):  
Ah-Young Park ◽  
Satish Chaparala ◽  
Seungbae Park

Through-silicon via (TSV) technology is expected to overcome the limitations of I/O density and helps in enhancing system performance of conventional flip chip packages. One of the challenges for producing reliable TSV packages is the stacking and joining of thin wafers or dies. In the case of the conventional solder interconnections, many reliability issues arise at the interface between solder and copper bump. As an alternative solution, Cu-Cu direct thermo-compression bonding (CuDB) is a possible option to enable three-dimension (3D) package integration. CuDB has several advantages over the solder based micro bump joining, such as reduction in soldering process steps, enabling higher interconnect density, enhanced thermal conductivity and decreased concerns about intermetallic compounds (IMC) formation. Critical issue of CuDB is bonding interface condition. After the bonding process, Cu-Cu direct bonding interface is obtained. However, several researchers have reported small voids at the bonded interface. These defects can act as an initial crack which may lead to eventual fracture of the interface. The fracture could happen due to the thermal expansion coefficient (CTE) mismatch between the substrate and the chip during the postbonding process, board level reflow or thermal cycling with large temperature changes. In this study, a quantitative assessment of the energy release rate has been made at the CuDB interface during temperature change finite element method (FEM). A parametric study is conducted to analyze the impact of the initial crack location and the material properties of surrounding materials. Finally, design recommendations are provided to minimize the probability of interfacial delamination in CuDB.


2021 ◽  
Vol 11 (10) ◽  
pp. 4635
Author(s):  
Marcel Ulrich Ahrens ◽  
Maximilian Loth ◽  
Ignat Tolstorebrov ◽  
Armin Hafner ◽  
Stephan Kabelac ◽  
...  

Decarbonization of the industrial sector is one of the most important keys to reducing global warming. Energy demands and associated emissions in the industrial sector are continuously increasing. The utilization of high temperature heat pumps (HTHPs) operating with natural fluids presents an environmentally friendly solution with great potential to increase energy efficiency and reduce emissions in industrial processes. Ammonia-water absorption–compression heat pumps (ACHPs) combine the technologies of an absorption and vapor compression heat pump using a zeotropic mixture of ammonia and water as working fluid. The given characteristics, such as the ability to achieve high sink temperatures with comparably large temperature lifts and high coefficient of performance (COP) make the ACHP interesting for utilization in various industrial high temperature applications. This work reviews the state of technology and identifies existing challenges based on conducted experimental investigations. In this context, 23 references with capacities ranging from 1.4 kW to 4500 kW are evaluated, achieving sink outlet temperatures from 45 °C to 115 °C and COPs from 1.4 to 11.3. Existing challenges are identified for the compressor concerning discharge temperature and lubrication, for the absorber and desorber design for operation and liquid–vapor mixing and distribution and the choice of solution pump. Recent developments and promising solutions are then highlighted and presented in a comprehensive overview. Finally, future trends for further studies are discussed. The purpose of this study is to serve as a starting point for further research by connecting theoretical approaches, possible solutions and experimental results as a resource for further developments of ammonia-water ACHP systems at high temperature operation.


2021 ◽  
pp. 1-41
Author(s):  
W. Walker Hanlon ◽  
Casper Worm Hansen ◽  
Jake Kantor

Using novel weekly mortality data for London spanning 1866-1965, we analyze the changing relationship between temperature and mortality as the city developed. Our main results show that warm weeks led to elevated mortality in the late nineteenth century, mainly due to infant deaths from digestive diseases. However, this pattern largely disappeared after WWI as infant digestive diseases became less prevalent. The resulting change in the temperature-mortality relationship meant that thousands of heat-related deaths—equal to 0.9-1.4 percent of all deaths— were averted. These findings show that improving the disease environment can dramatically alter the impact of high temperature on mortality.


Sign in / Sign up

Export Citation Format

Share Document