scholarly journals Dynamic Mechanical Properties of Oxide Films Formed on Metallic Surfaces as Measured Using a Tribological Approach at High Temperature

2011 ◽  
Vol 2011 ◽  
pp. 1-12
Author(s):  
Yoshinori Isomoto Oka ◽  
Toshinori Tsumura

The surface degradation of metals in boiler tubes and turbines in high-temperature corrosive environments causes severe problems in fuel combustion power plant systems. High-temperature resistant materials have been recently developed using a thermal barrier coating (TBC) and high-chromium alloys. Oxide films or coatings formed on metal surfaces at high temperatures can sometimes decrease the corrosion rate. However, the damage to the material is often accelerated by the mechanical removal of corrosion products from the material surface. It is therefore very important to investigate the mechanical and adhesive properties of the oxide films or coatings on metal surfaces used in high-temperature environments. This paper introduces a tribological method that uses a single spherical projectile impact at high temperature to measure the mechanical and adhesive properties of oxide films formed on various metal surfaces. Impact tests were performed on the surfaces of oxide films after their growth in a high-temperature furnace, and the deformed or fractured surfaces were observed in order to measure the mechanical and adhesive properties. The mechanical and adhesive properties of an elastic modulus, fracture, and exfoliation stresses were measured using the impact method, and the results depended on the type of metal oxide films and on the high-temperature environment.

2010 ◽  
Vol 65 ◽  
pp. 124-129
Author(s):  
Anne-Sophie Andreani ◽  
Francis Rebillat ◽  
Angéline Poulon-Quintin

The solar furnace is a heating system based on concentrated sunrays on the material surface. It is an original method for testing ultra-high-temperature ceramics (UHTC) at very high temperature (above 2200°C) in air with an exposure time of several minutes. In this study, the solar flux is 15.5 MW.m-2 with a homogeneous exposed surface of 10 mm2. A large temperature-time composition parameters space is covered producing a large set of oxidized samples. Massive cylindrical specimens of UHTC materials are prepared by spark plasma sintering at 1900°C under a pressure of 100 MPa for 5 minutes. Then, samples are tested in air from 1750°C up to 2400°C with dwell times varied from 1 to 5 min. During oxidation of ZrB2-SiC (20%vol) material, the formed and known complex oxide scale identified from literature is easily reproduced using this method. It consists of a thin outer silica layer and zirconia columnar layer with a region of SiC depleted zone in ZrB2 phase. The impact of the reduction of Si content is quantified and the coating ZrB2-20%vol SiC is tested as protection on C-C composite.


Author(s):  
H. Laribou ◽  
C. Fressengeas ◽  
D. Entemeyer ◽  
V. Jeanclaude ◽  
R. Pesci ◽  
...  

The technology of nitrogen jets impacting surfaces at low temperature has recently been introduced for surface cleaning/stripping. Under the impact of the jet, the material surface undergoes a thermomechanical shock inducing complex transformation mechanisms. Depending on the material and test parameters such as standoff distance, dwell time, upstream pressure, the latter include cleavage, cracking, spalling, blistering, grain fragmentation, phase transformation and ductile deformation. Quite often, these modes are superimposed in the same test, or even in the same material area. In this study, an overview of these mechanisms is proposed for metallic materials. Measurements of thermomechanical variables in the impacted area are presented and the influence of the test parameters on surface transformation is investigated. Grain fragmentation and ultrafast transport of nitrogen in a deep layer below the surface are explored.


2015 ◽  
Vol 2 (1) ◽  
pp. 30-34
Author(s):  
K. Korobkova ◽  
V. Patyka

Contemporary state of the distribution of mycoplasma diseases of cultivated crops in Ukraine was analyzed. The changes of the physiological state of plant cells under the impact of mollicutes were investigated. It was demonstrated that there is temporary increase in the activity of peroxidase, catalase, polyphenoloxidase, phenylalanine-ammonia-lyase at the early stages of interaction. The adhesive properties are changed in the mollicutes under the impact of plant lectin; there is synthesis of new polypeptides. It was determined that the phytopathogenic acholeplasma is capable of producing a complex of proteolytic enzymes into the culture me- dium. It was concluded that when plant cells are infected with acholeplasma, a number of signaling interactions and metabolic transformations condition the recognition of pathogenesis and ensure the aggregate response of a plant to stress in the form of defense reactions. It was assumed that some specifi cities of the biology of phy- topathogenic acholeplasma determine their avoiding the immune mechanisms of plants and promote long-term persistence of mollicutes.


2019 ◽  
pp. 43-48
Author(s):  
Ben Nengjun ◽  
Zhou Pengfei ◽  
Oleksandr Labartkava ◽  
Mykhailo Samokhin

This work involves an analysis of high-chromium high-temperature deformable wieldable nickel alloys for use in GTE repair assemblies. It is shown that the alloys EP868 (VZh98) and Haynes 230 can be used in welded assemblies with an operating temperature of 800-1100 °C. The alloys Nimonic 81, Nimonic 91, IN 935, IN 939, and Nicrotan 2100 GT also have a high potential for use in welded assemblies. They are characterized by a combination of good weldability, high-temperature strength, and resistance to scaling. There have been conducted studies on high-temperature salt corrosion of model nickel alloys. They allowed establishing the patterns of the impact of base metal alloying with chromium, aluminum, titanium, cobalt, tungsten, molybdenum, niobium, tantalum and rare earth metals on the critical temperature of the start of salt corrosion Tcor and the alloy mass loss. It has been established that alloys with a moderate concentration (13-16%) of chromium can possess satisfactory hightemperature corrosion resistance (HTC resistance) under the operating conditions of ship GTE. The HTC resistance of CrAl-Ti alloys improves upon reaching the ratio Ti/Al ˃ 1. Meanwhile, the ratio Ti/Al ˂ 1 promotes the formation of corrosion products with low protective properties. The positive effect of tantalum on the HTC resistance of alloys is manifested at higher test temperatures than that of titanium, and the total content of molybdenum and tungsten in alloys is limited by the condition 8Mo2 – 2W2 = 89. The presence of refractory elements stabilizes the strengthening phase and prevents formation of the ɳ-phase. However, their excess promotes formation of the embrittling topologically close packed (TCP) phases and boundary carbides of an unfavorable morphology. Based on the studies of the HTC resistance, there has been identified a class of model high-temperature corrosionresistant nickel alloys with a moderate or high chromium content (30%), Ti/Al ˃ 1, and a balanced content of refractory and rare-earth elements.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1128
Author(s):  
Sylwia Członka ◽  
Anna Strąkowska ◽  
Agnė Kairytė

In this study, coir fibers were successfully modified with henna (derived from the Lawsonia inermis plant) using a high-energy ball-milling process. In the next step, such developed filler was used as a reinforcing filler in the production of rigid polyurethane (PUR) foams. The impact of 1, 2, and 5 wt % of coir-fiber filler on structural and physico-mechanical properties was evaluated. Among all modified series of PUR composites, the greatest improvement in physico-mechanical performances was observed for PUR composites reinforced with 1 wt % of the coir-fiber filler. For example, on the addition of 1 wt % of coir-fiber filler, the compression strength was improved by 23%, while the flexural strength increased by 9%. Similar dependence was observed in the case of dynamic-mechanical properties—on the addition of 1 wt % of the filler, the value of glass transition temperature increased from 149 °C to 178 °C, while the value of storage modulus increased by ~80%. It was found that PUR composites reinforced with coir-fiber filler were characterized by better mechanical performances after the UV-aging.


2021 ◽  
pp. 1-41
Author(s):  
W. Walker Hanlon ◽  
Casper Worm Hansen ◽  
Jake Kantor

Using novel weekly mortality data for London spanning 1866-1965, we analyze the changing relationship between temperature and mortality as the city developed. Our main results show that warm weeks led to elevated mortality in the late nineteenth century, mainly due to infant deaths from digestive diseases. However, this pattern largely disappeared after WWI as infant digestive diseases became less prevalent. The resulting change in the temperature-mortality relationship meant that thousands of heat-related deaths—equal to 0.9-1.4 percent of all deaths— were averted. These findings show that improving the disease environment can dramatically alter the impact of high temperature on mortality.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 48
Author(s):  
Mateusz Kopec ◽  
Dominik Kukla ◽  
Xin Yuan ◽  
Wojciech Rejmer ◽  
Zbigniew L. Kowalewski ◽  
...  

In this paper, mechanical properties of the as-received and aluminide layer coated MAR 247 nickel based superalloy were examined through creep and fatigue tests. The aluminide layer of 20 µm was obtained through the chemical vapor deposition (CVD) process in the hydrogen protective atmosphere for 8 h at the temperature of 1040 °C and internal pressure of 150 mbar. A microstructure of the layer was characterized using the scanning electron microscopy (SEM) and X-ray Energy Dispersive Spectroscopy (EDS). It was found that aluminide coating improve the high temperature fatigue performance of MAR247 nickel based superalloy at 900 °C significantly. The coated MAR 247 nickel based superalloy was characterized by the stress amplitude response ranging from 350 MPa to 520 MPa, which is twice as large as that for the uncoated alloy.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rui Zhang ◽  
Yujie Meng ◽  
Hejia Song ◽  
Ran Niu ◽  
Yu Wang ◽  
...  

Abstract Background Although exposure to air pollution has been linked to many health issues, few studies have quantified the modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo, China. Methods The data of daily incidence of influenza and the relevant meteorological data and air pollution data in Ningbo from 2014 to 2017 were retrieved. Low, medium and high temperature layers were stratified by the daily mean temperature with 25th and 75th percentiles. The potential modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo was investigated through analyzing the effects of air pollutants stratified by temperature stratum using distributed lag non-linear model (DLNM). Stratified analysis by sex and age were also conducted. Results Overall, a 10 μg/m3 increment of O3, PM2.5, PM10 and NO2 could increase the incidence risk of influenza with the cumulative relative risk of 1.028 (95% CI 1.007, 1.050), 1.061 (95% CI 1.004, 1.122), 1.043 (95% CI 1.003, 1.085), and 1.118 (95% CI 1.028, 1.216), respectively. Male and aged 7–17 years were more sensitive to air pollutants. Through the temperature stratification analysis, we found that temperature could modify the impacts of air pollution on daily incidence of influenza with high temperature exacerbating the impact of air pollutants. At high temperature layer, male and the groups aged 0–6 years and 18–64 years were more sensitive to air pollution. Conclusion Temperature modified the relationship between air pollution and daily incidence of influenza and high temperature would exacerbate the effects of air pollutants in Ningbo.


Sign in / Sign up

Export Citation Format

Share Document