The Effect of Droplet Diameter on the Separation of Heavy-Oil from Water Using a Hydrocyclone

2010 ◽  
Vol 303-304 ◽  
pp. 131-137 ◽  
Author(s):  
F.P.M. Farias ◽  
C.J.O. Buriti ◽  
W.C.P. Barbosa de Lima ◽  
S.R.F. Neto ◽  
Antônio Gilson Barbosa de Lima

The hydrocyclone is an alternative for produced water treatment in the petroleum industries, especially at offshore fields. Many parameters, such as oil droplet diameter affect the separation performance of the hydrocyclone. In this sense, the purpose of this work is study the effect of oil droplet diameter and inlet fluid on the separation efficiency of a hydrocyclone to remove dispersed heavy-oil from a water continuous stream. Results of the streamline, pressure drop, volume fraction and efficiency of separation as a function of oil droplet diameter and feed velocity are presented and analyzed.

2021 ◽  
Author(s):  
Steinar Asdahl ◽  
Johann Jansen van Rensburg ◽  
Martin Einarson Waag ◽  
Rune Glenna Nilssen

Abstract Traditionally, produced water from production separators is handled by multiple steps and different technologies in order to meet the required quality for either discharge or reinjection of the water. The development of the latest Compact Flotation Unit (CFU) technology has unlocked the potential for savings on cost, complexity, footprint and weight for the produced water treatment system. The developed CFU technology has proven applicable through field testing as a single treatment technology for reducing Oil-in-Water (OiW) content directly from tie-in at separator and still meet stringent requirements for outlet OiW quality. Field tests were conducted with inlet OiW concentration ranging from 200-2000 ppm, achieving results in the range 2.5 to 21 ppm only with a two-stage latest generation CFU. Compared to a traditional produced water system setup consisting of de-oiling hydrocyclones and a horizontal degassing vessel, the savings in footprint and operational weight is estimated to 54 % and 53 % respectively utilizing a two-stage CFU for a system with a design capacity of 76.000 BWPD. Furthermore, the development of the latest generation CFU technology has enabled the retrofit concept, incorporating the developed CFU internals into existing gravity separation based produced water vessels, converting them to more efficient flotation vessels with increased capacity. For brownfield and debottlenecking applications, operators are challenged by increasing water cut from maturing wells, and as a result exceeding the facilities design capacity for produced water treatment. This challenge is often further reinforced by increasingly stricter environmental legislation for OiW content for discharge or re-injection. The retrofit concept will offer a highly cost-, footprint- and weight-efficient solutions to these challenges utilizing existing vessels. Benefits of the retrofit concept: Bring proven and unique performance of the technology to other produced water separation vessels helping the operators improve the separation efficiency and increase throughput while meeting discharge requirementsShort execution time compared to installation of new process equipmentLow cost compared to installation of new process equipmentUtilization of existing equipment saves valuable footprint.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 709
Author(s):  
Asmat Ullah ◽  
Kamran Alam ◽  
Saad Ullah Khan ◽  
Victor M. Starov

A new method is proposed to increase the rejection in microfiltration by applying membrane oscillation, using a new type of microfiltration membrane with slotted pores. The oscillations applied to the membrane surface result in reduced membrane fouling and increased separation efficiency. An exact mathematical solution of the flow in the surrounding solution outside the oscillating membrane is developed. The oscillation results in the appearance of a lift velocity, which moves oil particles away from the membrane. The latter results in both reduced membrane fouling and increased oil droplet rejection. This developed model was supported by the experimental results for oil water separation in the produced water treatment. It was proven that the oil droplet concentration was reduced notably in the permeate, due to the membrane oscillation, and that the applied shear rate caused by the membrane oscillation also reduced pore blockage. A four-times lower oil concentration was recorded in the permeate when the membrane vibration frequency was 25 Hz, compared to without membrane vibration. Newly generated microfiltration membranes with slotted pores were used in the experiments.


2013 ◽  
Vol 275-277 ◽  
pp. 558-561
Author(s):  
Xiao Ming Yuan ◽  
Hui Jun Zhao ◽  
Jing Yi Qu

Designed a new type of double inlet cylindrical cyclone. For search the separation performance in a cylindrical cyclone. By use of CFD,applied the RSM turbulence model and Euler two-phase flow method and ASM which to simulate separation process and flow field within a double inlet cylindrical cyclone. Then compared with the single inlet cyclone,obtained velocity distribution. Analyzed the differences of discrete phase volume fraction between different viscosity. The results show that the new-style cyclone caught more stable fluid field and higher separation efficiency. And when the viscosity is about 0.75 kg/m•s, the separation efficiency and stability of the oil core is higher. Preliminary flow field law is shown up.


RSC Advances ◽  
2020 ◽  
Vol 10 (32) ◽  
pp. 18918-18926 ◽  
Author(s):  
Mengjin Zhai ◽  
Mian Wu ◽  
Cunying Wang ◽  
Xiaobing Li

The existence of fine-sized oil drops that are difficult to coalesce greatly decreases the separation efficiency of produced water from alkali, surfactant, and polymer flooding technology (ASP) containing oil-in-water emulsions.


2018 ◽  
Vol 24 (2) ◽  
pp. 139-147 ◽  
Author(s):  
Tutuk Kusworo ◽  
Hadiyanto Hadiyanto ◽  
Deariska Deariska ◽  
Nugraha Lutfi

Produced water is the wastewater generated from the process of exploration in oil and gas production, which needs special treatment. A membrane with cellulose acetate is widely used for produced water treatment, but further developments and improvements are still required. Therefore, it is important to determine the factors of separation efficiency of an ultrathin cellulose acetate membrane by assessing the influence of the composition of the dope solution. The response surface methodology was employed to determine the optimal conditions for this application. The investigations were conducted by varying the cellulose acetate polymer concentration at 18-20 wt.%, polyethylene glycol 4000 at 2-3 wt.% and nonsolvent addition at 3-5 wt.%. The evaluation of membrane performance for the produced water treatment was performed in a dead-end filtration cell with permeate water flux and rejection parameters for turbidity, total dissolved solids, Ca2+, Mg2+ and sulfides of produced water upstream and downstream of the membrane. The optimal composition of the dope solution was: 19 wt.% of cellulose acetate, 3 wt.% of polyethylene glycol, and 5.67 wt.% of non-solvent.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 418
Author(s):  
Leif Hansen ◽  
Mads Valentin Bram ◽  
Simon Pedersen ◽  
Zhenyu Yang

Offshore produced water treatment (PWT) accounts for cleaning the largest waste stream in the offshore oil and gas industry. If this separation process is not properly executed, large amounts of oil are often directly discharged into the ocean. This work extends two grey-box models of a three-phase gravity separator and a deoiling hydrocyclone, and combines them into a single plant-wide model for testing PWT control solutions in a typical process configuration. In simulations, three known control solutions—proportional-integral-derivative (PID) control, H∞ control, and model predictive control (MPC)—are compared on the combined model to evaluate the separation performance. The results of the simulations clearly show what performance metrics each controller excels at, such as valve wear, oil discharge, oil-in-water (OiW) concentration variance, and constraint violations. The work incentivizes future control to be based on operational policy, such as defining boundary constraints and weights on oil discharge, rather than maintaining conventional intermediate performance metrics, such as water level in the separation and pressure drop ratio (PDR) over the hydrocyclone.


Sign in / Sign up

Export Citation Format

Share Document