Analysis of Pollutant Emissions of Diesel Engine Operating with Mixture of Diesel, Biodiesel and Natural Gas

2015 ◽  
Vol 365 ◽  
pp. 100-105
Author(s):  
Fernando José da Silva ◽  
Antônio Gilson Barbosa de Lima ◽  
Yoge Jerônimo Ramos da Costa ◽  
Celso Rosendo Bezerra Filho

The aim of this research is to study the pollutant emissions of the commercial diesel engine, operating with B5 (commercial diesel), B70, B80, B90 and natural gas. The fuel used in the engine consists of a mixture of 15% diesel and biodiesel (liquid fuel) and 85% natural gas. Experiments were made using 40, 60 and 80 kW load. The engine was instrumented to obtain the temperature, air, gas and diesel (plus biodiesel) flow rates, the air pressure at the entrance of the engine, the lubricant oil temperature, and the concentration of exhaust gases during each experimental test. It was verified that the emission of NOx, NO and CO2 had decreased while the emissions of CO and SO2 had increased, when compared to the conditions using standard diesel (B5) alone.

2019 ◽  
Vol 23 (9) ◽  
pp. 60-65 ◽  
Author(s):  
V.A. Likhanov ◽  
O.P. Lopatin

The results of studies of the integral toxicity of exhaust gases of a diesel engine operating on natural gas and alcohol emulsions are presented. At the same time, the regimes characterizing the specific toxicity of a diesel engine under its operating conditions were determined, and emissions of toxic components on these regimes were determined taking into account their weight coefficients. The results of research specific toxic diesel exhaust toxicity indicators, in accordance with the requirements of UNECE Regulation No. 49, show that when a diesel engine operates on natural gas with exhaust gas recirculation and an ethanol-fuel emulsion, the content of nitrogen oxides (NOx) and carbon dioxide (CO) in the exhaust gases conforms to "EURO 3", particulate matter – "EURO 5", total hydrocarbons (CHx) – "EURO 2". When the diesel engine is running on a methanol-fuel emulsion, the content of NOx, СНx and CO in the exhaust gases complies with the standards "EURO 3", particulate matter – "EURO 5".


2021 ◽  
Vol 7 ◽  
Author(s):  
Michela Costa ◽  
Daniele Piazzullo ◽  
Alessandro Dolce

A numerical study of the energy conversion process occurring in a lean-charge cogenerative engine, designed to be powered by natural gas, is here conducted to analyze its performances when fueled with mixtures of natural gas and several percentages of hydrogen. The suitability of these blends to ensure engine operations is proven through a zero–one-dimensional engine schematization, where an original combustion model is employed to account for the different laminar propagation speeds deriving from the hydrogen addition. Guidelines for engine recalibration are traced thanks to the achieved numerical results. Increasing hydrogen fractions in the blend speeds up the combustion propagation, achieving the highest brake power when a 20% of hydrogen fraction is considered. Further increase of this last would reduce the volumetric efficiency by virtue of the lower mixture density. The formation of the NOx pollutants also grows exponentially with the hydrogen fraction. Oppositely, the efficiency related to the exploitation of the exhaust gases’ enthalpy reduces with the hydrogen fraction as shorter combustion durations lead to lower temperatures at the exhaust. If the operative conditions are shifted towards leaner air-to-fuel ratios, the in-cylinder flame propagation speed decreases because of the lower amount of fuel trapped in the mixture, reducing the conversion efficiencies and the emitted nitrogen oxides at the exhaust. The link between brake power and spark timing is also highlighted: a maximum is reached at an ignition timing of 21° before top dead center for hydrogen fractions between 10 and 20%. However, the exhaust gases’ temperature also diminishes for retarded spark timings. Lastly, an optimization algorithm is implemented to individuate the optimal condition in which the engine is characterized by the highest power production with the minimum fuel consumption and related environmental impact. As a main result, hydrogen addition up to 15% in volume to natural gas in real cogeneration systems is proven as a viable route only if engine operations are shifted towards leaner air-to-fuel ratios, to avoid rapid pressure rise and excessive production of pollutant emissions.


2021 ◽  
Vol 2 (1 (110)) ◽  
pp. 52-60
Author(s):  
Serhii Kovbasenko ◽  
Andrii Holyk ◽  
Vatalii Simonenko

This paper reports a study into the fuel, economic, energy, and environmental indicators of the diesel engine operating in the diesel-gas cycle. It was established that the injection timing has a significant impact on the diesel engine indicators, in particular emissions of harmful substances with exhaust gases. The gas injection timing was investigated at crankshaft speeds n=1,300 rpm and n=1,600 rpm. At these crankshaft speeds, measurements were carried out at three different values of the injection timing. It has been determined that for each crankshaft speed of the diesel engine, the rational values of the injection timing of compressed natural gas are different. This is due to the time limits for supplying compressed natural gas to cylinders. Bench motor tests were carried out to analyze the effect of change in the gas injection timing on the diesel engine performance indicators operating in the diesel-gas cycle. The diesel engine performance indicators were also determined during a diesel cycle and during a diesel-gas cycle. The analysis has established the effect of change in the injection timing on the concentrations of carbon monoxide, hydrocarbons, nitrogen oxides, and the smoke of exhaust gases under different speed and load modes of diesel engine operation. This effect manifests itself by a slight decrease in the concentration of carbon monoxide and hydrocarbons, by the increase in the concentration of nitrogen oxides (up to 30 %), and by a significant reduction in the smoke of exhaust gases (up to 90 %). The improvement of environmental indicators of the diesel engine has been confirmed when switching its operation to the diesel-gas cycle, by 10‒16 %, with similar fuel, economic, and energy indicators. Thus, there are grounds to assert the importance of choosing and establishing the rational value for the injection timing of compressed natural gas, depending on the speed and load modes of diesel engine operating in the diesel-gas cycle.


1993 ◽  
Vol 115 (4) ◽  
pp. 747-749 ◽  
Author(s):  
M. Gambino ◽  
R. Cericola ◽  
P. Corbo ◽  
S. Iannaccone

Previous works carried out in Istituto Motori laboratories have shown that natural gas is a suitable fuel for general means of transportation. This is because of its favorable effects on engine performance and pollutant emissions. The natural gas fueled engine provided the same performance as the diesel engine, met R49 emission standards, and showed very low smoke levels. On the other hand, it is well known that internal combustion engines emit some components that are harmful for human health, such as carbonyl compounds and polycyclic aromatic hydrocarbons (PAH). This paper shows the results of carbonyl compounds and PAH emissions analysis for a heavy-duty Otto cycle engine fueled with natural gas. The engine was tested using the R49 cycle that is used to measure the regulated emissions. The test analysis has been compared with an analysis of a diesel engine, tested under the same conditions. Total PAH emissions from the CNG engine were about three orders of magnitude lower than from the diesel engine. Formaldehyde emission from the CNG engine was about ten times as much as from the diesel engine, while emissions of other carbonyl compounds were comparable.


2017 ◽  
Author(s):  
Fanxu Meng ◽  
Asanga Wijesinghe ◽  
John Colvin ◽  
Carolyn LaFleur ◽  
Richard Haut

2020 ◽  
pp. 22-30
Author(s):  
SERGEY N. DEVYANIN ◽  
◽  
VLADIMIR A. MARKOV ◽  
ALEKSANDR G. LEVSHIN ◽  
TAMARA P. KOBOZEVA ◽  
...  

The paper presents the results of long-term research on the oil productivity and chemical composition of soybean oil of the Northern ecotype varieties in the Central Non-Black Earth Region. The authors consider its possible use for biodiesel production. Experiments on growing soybeans were carried out on the experimental fi eld of Russian State Agrarian University –Moscow Timiryazev Agricultural Academy (2008-2019) on recognized ultra-early ripening varieties of the Northern ecotype Mageva, Svetlaya, Okskaya (ripeness group 000). Tests were set and the research results were analyzed using standard approved methods. It has been shown that in conditions of high latitudes (57°N), limited thermal resources of the Non-Chernozem zone of Russia (the sum of active temperatures of the growing season not exceeding 2000°С), the yield and productivity of soybeans depend on the variety and moisture supply. Over the years, the average yield of soybeans amounted to 1.94 … 2.62 t/ha, oil productivity – 388 … 544 kg/ha, oil content – 19…20%, the content of oleic and linoleic fatty acids in oil – 60%, and their output from seeds harvested – 300 kg/ha. It has been established that as soybean oil and diesel fuel have similar properties,they can be mixed by conventional methods in any proportions and form stable blends that can be stored for a long time. Experimental studies on the use of soybean oil for biodiesel production were carried out on a D-245 diesel engine (4 ChN11/12.5). The concentrations of toxic components (CO, CHx, and NOx) in the diesel exhaust gases were determined using the SAE-7532 gas analyzer. The smoke content of the exhaust gases was measured with an MK-3 Hartridge opacimeter. It has been experimentally established that the transfer of a diesel engine from diesel fuel to a blend of 80% diesel fuel and 20% lubrication oil leads to a change in the integral emissions per test cycle: nitrogen oxides in 0.81 times, carbon monoxide in 0.89 times and unburned hydrocarbons in 0.91 times, i.e. when biodiesel as used as a motor fuel in a serial diesel engine, emissions of all gaseous toxic components are reduced. The study has confi rmed the expediency of using soybeans of the Northern ecotype for biofuel production.


2018 ◽  
Author(s):  
Z. Gerald Liu ◽  
Devin R. Berg ◽  
Thaddeus A. Swor ◽  
James J. Schauer‡

Two methods, diesel particulate filter (DPF) and selective catalytic reduction (SCR) systems, for controlling diesel emissions have become widely used, either independently or together, for meeting increasingly stringent emissions regulations world-wide. Each of these systems is designed for the reduction of primary pollutant emissions including particulate matter (PM) for the DPF and nitrogen oxides (NOx) for the SCR. However, there have been growing concerns regarding the secondary reactions that these aftertreatment systems may promote involving unregulated species emissions. This study was performed to gain an understanding of the effects that these aftertreatment systems may have on the emission levels of a wide spectrum of chemical species found in diesel engine exhaust. Samples were extracted using a source dilution sampling system designed to collect exhaust samples representative of real-world emissions. Testing was conducted on a heavy-duty diesel engine with no aftertreatment devices to establish a baseline measurement and also on the same engine equipped first with a DPF system and then a SCR system. Each of the samples was analyzed for a wide variety of chemical species, including elemental and organic carbon, metals, ions, n-alkanes, aldehydes, and polycyclic aromatic hydrocarbons, in addition to the primary pollutants, due to the potential risks they pose to the environment and public health. The results show that the DPF and SCR systems were capable of substantially reducing PM and NOx emissions, respectively. Further, each of the systems significantly reduced the emission levels of the unregulated chemical species, while the notable formation of new chemical species was not observed. It is expected that a combination of the two systems in some future engine applications would reduce both primary and secondary emissions significantly.


2019 ◽  
pp. 12-17
Author(s):  
V.A. Lihanov ◽  
◽  
M.L. Skryabin ◽  
A.V. Grebnev ◽  
◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 123
Author(s):  
Sergejus Lebedevas ◽  
Lukas Norkevičius ◽  
Peilin Zhou

Decarbonization of ship power plants and reduction of harmful emissions has become a priority in the technological development of maritime transport, including ships operating in seaports. Engines fueled by diesel without using secondary emission reduction technologies cannot meet MARPOL 73/78 Tier III regulations. The MEPC.203 (62) EEDI directive of the IMO also stipulates a standard for CO2 emissions. This study presents the results of research on ecological parameters when a CAT 3516C diesel engine is replaced by a dual-fuel (diesel-liquefied natural gas) powered Wartsila 9L20DF engine on an existing seaport tugboat. CO2, SO2 and NOx emission reductions were estimated using data from the actual engine load cycle, the fuel consumption of the KLASCO-3 tugboat, and engine-prototype experimental data. Emission analysis was performed to verify the efficiency of the dual-fuel engine in reducing CO2, SO2 and NOx emissions of seaport tugboats. The study found that replacing a diesel engine with a dual-fuel-powered engine led to a reduction in annual emissions of 10% for CO2, 91% for SO2, and 65% for NOx. Based on today’s fuel price market data an economic impact assessment was conducted based on the estimated annual fuel consumption of the existing KLASCO-3 seaport tugboat when a diesel-powered engine is replaced by a dual-fuel (diesel-natural gas)-powered engine. The study showed that a 33% fuel costs savings can be achieved each year. Based on the approved methodology, an ecological impact assessment was conducted for the entire fleet of tugboats operating in the Baltic Sea ports if the fuel type was changed from diesel to natural gas. The results of the assessment showed that replacing diesel fuel with natural gas achieved 78% environmental impact in terms of NOx emissions according to MARPOL 73/78 Tier III regulations. The research concludes that new-generation engines on the market powered by environmentally friendly fuels such as LNG can modernise a large number of existing seaport tugboats, significantly reducing their emissions in ECA regions such as the Baltic Sea.


2021 ◽  
Vol 11 (13) ◽  
pp. 6123
Author(s):  
Katarzyna Bebkiewicz ◽  
Zdzisław Chłopek ◽  
Hubert Sar ◽  
Krystian Szczepański ◽  
Magdalena Zimakowska-Laskowska

The aim of this study is to investigate the environmental hazards posed by solid particles resulting from road transport. To achieve this, a methodology used to inventory pollutant emissions was used in accordance with the recommendations of the EMEP/EEA (European Monitoring and Evaluation Programme/European Economic Area). This paper classifies particulates derived from road transport with reference to their properties and sources of origin. The legal status of environmental protection against particulate matter is presented. The emissions of particulate matter with different properties from different road transport sources is examined based on the results of Poland’s inventory of pollutant emissions in the year 2018. This study was performed using areas with characteristic traffic conditions: inside and outside cities, as well as on highways and expressways. The effects of vehicles were classified according to Euro emissions standards into the categories relating to the emissions of different particulate matter types. The results obtained showed that technological progress in the automobile sector has largely contributed to a reduction in particulate matter emissions associated with engine exhaust gases, and that this has had slight effect on particulate matter emissions associated with the tribological processes of vehicles. The conclusion formed is that it is advisable to undertake work towards the control and reduction of road transport particulate matter emissions associated with the sources other than engine exhaust gases.


Sign in / Sign up

Export Citation Format

Share Document