Fabrication of Turmeric Powder-Loaded Silk Fibroin Film for Wound Healing Application

Author(s):  
Vu Nguyen Doan ◽  
Tung Thanh Truong ◽  
Ha Le Bao Tran

Background: Currently silk fibroin is used more and more in the biomedical researches, including a potential research direction in creating wound dressing. Turmeric powder is a natural drug with many properties suitable for treatment of burns such as anti-inflammatory, anti-bacterial, anti-fungal, especially reducing formation of scars. Methods: In this study, sericin is removed from the silk to obtain fibroin fiber. Fibroin fiber and turmeric powder are dissolved by formic acid adding calcium chloride (CaCl2). Created fibroin films (FF) are then evaluated in some characteristics such as surface structure, chemical structure, tensile strength, absorbency, dehydration rate, biodegradation ability, pH determination, preventing bacteria ability and cytotoxicity test. Results: All results indicated that created FF is fulfilled with all the required properties of wound dressings. Conclusions: This study is the first step to creating foundation and orientation for the development of commercial wound dressings.

2020 ◽  
Vol 4 (1) ◽  
pp. 53
Author(s):  
Fadhil Muhammad Tarmidzi ◽  
Inggit Kresna Maharsih ◽  
Tina Raihatul Jannah ◽  
Cici Sari Wahyuni

Teknik pembalutan luka saat ini menerapkan metode perawatan luka modern dengan cara mempertahankan isolasi lingkungan luka dalam keadaan tertutup dan lembab. Ada beberapa jenis pembalut luka yang telah dikembangkan, salah satunya hidrogel. Hidrogel merupakan pembalut luka berbentuk lembaran yang memiliki kemampuan menyerap cairan luka dan memiliki stabilitas yang baik pada pH asam sehingga dapat digunakan untuk pengobatan luka bakar. Dalam penelitian ini, hidrogel dibuat menggunakan polimer alami seperti pektin dan gelatin. Kedua bahan tersebut dikombinasikan menggunakan metode ikatan silang dengan penambahan asam sitrat sebagai agen pengikat silang. Penambahan asam sitrat memberikan pengaruh terhadap karakteristik material hidrogel yang dihasilkan, sehingga diperlukan jumlah yang tepat agar didapatkan hidrogel dengan properti material yang baik. Hidrogel juga ditambahkan zat aktif berupa flavonoid pada ekstrak kulit buah naga agar dapat digunakan sebagai pembalut luka untuk menyembuhkan luka bakar. Dari hasil penelitian, hidrogel dengan konsentrasi asam sitrat 4% (Hidrogel CA 4%) menghasilkan nilai swelling, tensile strength, dan elongation tertinggi sebesar 890%, 0,05 Mpa, dan 200%. Hasil properti mekanik dari Hidrogel CA 4% ini dibuktikan dengan uji FTIR yang telah dilakukan, yaitu munculnya gugus karbonil C=O sebagai hasil reaksi esterifikasi yang terjadi antara polimer dengan asam sitrat di daerah serapan 1733,9 cm-1.Wound dressing technique currently applies modern wound care methods by maintaining the environmental isolation of the wound in a closed and moist state. There are several types of wound dressing that have been developed, one of them is hydrogel. Hydrogel is sheet-shaped wound dressings which have the ability to absorb exudate and have good stability acidic pH that can be used for the treatment of burns. In this study, hydrogel were made using natural polymers such as pectin and gelatin. The two polymers were combined using crosslinking method with the addition of citric acid as a crosslinking agent. The addition of citric acid has affect on the characteristics of the hydrogel material produced, therefore the right amount is needed to obtain a hydrogel with good mechanical properties. Hydrogel also added by an active substance in the form of flavonoids from dragon fruit peel extract that can be used as a wound dressing to cure burns. This study resulting hydrogel with a concentration of 4% citric acid (Hydrogel CA 4%) produced highest value of swelling, tensile strength, and elongation are 890%, 0.05 Mpa, and 200%, repectively. The mechanical properties of Hydrogel CA 4% was proved by FTIR test that had been carried out, namely the presence of C=O carbonyl group as a result of the esterification reaction that occurred between the polymers and citric acid in the absorption area of 1733.9 cm-1.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Esmaeil Biazar ◽  
Ziba Roveimiab ◽  
Gholamreza Shahhosseini ◽  
Mohammadreza Khataminezhad ◽  
Mandana Zafari ◽  
...  

The composition of the dressings is based on polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), and agar. The electron beam irradiation technique has been used to prepare hydrogel wound dressings. Thein vitrobiocompatibility of the hydrogel was investigated by check samples (hydrocolloid Comfeel), antibacterial test (Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia Colik12), anti fungal test (Candida Albicans) and cytotoxicity test (Fibroblast L929). Results have shown cell attachment characteristics and nontoxicity of all samples. Antibacterial testing also showed that the antibacterial effect of the hydrogel sample to the check sample increased to 30%. Also, investigation of antifungal analysis did not show any trace of fungi growth on the surface of the hydrogel, whereas antifungal effect did not observe on the surface of the check sample. Finally, this hydrogel sample showed a goodin vitrobiocompatibility.


2018 ◽  
Vol 24 (8) ◽  
pp. 936-951 ◽  
Author(s):  
Zhengwen Li ◽  
Menno Knetsch

Wound management is an important and increasing global issue. Infection of a wound can cause a delay in wound healing and pain, but also more serious complications like tissue necrosis or even sepsis, which can lead to loss of tissue, limbs or life. Antibacterial agents have been introduced into wound infection care. In this review, we provide an insight into the current antibacterial strategies of wound dressings, including wound infection process, antibacterial agents, and controlled drug release systems. We also emphasize the development of intelligent wound dressing and introduce a promising research direction.


Author(s):  
Sadjad Khosravimelal ◽  
Milad Chizari ◽  
Behrouz Farhadihosseinabadi ◽  
Mehrdad Moosazadeh Moghaddam ◽  
Mazaher Gholipourmalekabadi

AbstractWound infections are still problematic in many cases and demand new alternatives for current treatment strategies. In recent years, biomaterials-based wound dressings have received much attention due to their potentials and many studies have been performed based on them. Accordingly, in this study, we fabricated and optimized an antibacterial chitosan/silk fibroin (CS/SF) electrospun nanofiber bilayer containing different concentrations of a cationic antimicrobial peptide (AMP) for wound dressing applications. The fabricated CS/SF nanofiber was fully characterized and compared to the electrospun silk fibroin and electrospun chitosan alone in vitro. Then, the release rate of different concentrations of peptide (16, 32, and 64 µg/ml) from peptide-loaded CS/SF nanofiber was investigated. Finally, based on cytotoxic activity, the antibacterial activity of scaffolds containing 16 and 32 µg/ml of the peptide was evaluated against standard and multi-drug resistant strains of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa isolated from burn patients. The peptide-loaded CS/SF nanofiber displayed appropriate mechanical properties, high water uptake, suitable biodegradation rate, a controlled release without cytotoxicity on Hu02 human foreskin fibroblast cells at the 16 and 32 µg/ml concentrations of peptide. The optimized CS/SF containing 32 μg/ml peptide showed strong antibacterial activity against all experimental strains from standard to resistance. The results showed that the fabricated antimicrobial nanofiber has the potential to be applied as a wound dressing for infected wound healing, although further studies are needed in vivo.


2021 ◽  
Author(s):  
Sadjad Khosravimelal ◽  
Milad Chizari ◽  
Behrouz Farhadihosseinabadi ◽  
Mehrdad Moosazadeh Moghaddam ◽  
Mazaher Gholipourmalekabadi

Abstract Wound infections are still problematic in many cases and demand new alternatives for current treatment strategies. In recent years, biomaterials-based wound dressings have received much attention due to their potentials and many studies have been performed based on them. Accordingly, in this study, we fabricated and optimized an antibacterial chitosan/silk fibroin (CS/SF) electrospun nanofiber bilayer containing different concentrations of a cationic antimicrobial peptide (AMP) for wound dressing applications. The fabricated CS/SF nanofiber was fully characterized and compared to the electrospun silk fibroin and electrospun chitosan alone in vitro. Then, the release rate of different concentrations of peptide (16, 32, and 64 µg/ml) from peptide-loaded CS/SF nanofiber was investigated. Finally, based on cytotoxic activity, the antibacterial activity of scaffolds containing 16 and 32 µg/ml of peptide was evaluated against standard and multi-drug resistant strains of Staphylococcus aureus and Escherichia coli isolated from burn patients. The peptide-loaded CS/SF nanofiber displayed appropriate mechanical properties, high water uptake, suitable biodegradation rate, a controlled release without cytotoxicity on Hu02 human foreskin fibroblast cells at the 16 and 32 µg/ml concentrations of peptide. The optimized CS/SF containing 32 µg/ml peptide showed strong antibacterial activity against all experimental strains from standard to resistant. The results showed that the fabricated antimicrobial nanofiber has the potential to be applied as a wound dressing for infected wound healing, although further studies are needed in vivo.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2104
Author(s):  
Sibusiso Alven ◽  
Blessing Atim Aderibigbe

The management of chronic wounds is challenging. The factors that impede wound healing include malnutrition, diseases (such as diabetes, cancer), and bacterial infection. Most of the presently utilized wound dressing materials suffer from severe limitations, including poor antibacterial and mechanical properties. Wound dressings formulated from the combination of biopolymers and synthetic polymers (i.e., poly (vinyl alcohol) or poly (ε-caprolactone) display interesting properties, including good biocompatibility, improved biodegradation, good mechanical properties and antimicrobial effects, promote tissue regeneration, etc. Formulation of these wound dressings via electrospinning technique is cost-effective, useful for uniform and continuous nanofibers with controllable pore structure, high porosity, excellent swelling capacity, good gaseous exchange, excellent cellular adhesion, and show a good capability to provide moisture and warmth environment for the accelerated wound healing process. Based on the above-mentioned outstanding properties of nanofibers and the unique properties of hybrid wound dressings prepared from poly (vinyl alcohol) and poly (ε-caprolactone), this review reports the in vitro and in vivo outcomes of the reported hybrid nanofibers.


2021 ◽  
pp. 088532822199601
Author(s):  
Linying Shi ◽  
Fang Lin ◽  
Mou Zhou ◽  
Yanhui Li ◽  
Wendan Li ◽  
...  

The ever-growing threats of bacterial infection and chronic wound healing have provoked an urgent need for novel antibacterial wound dressings. In this study, we developed a wound dressing for the treatment of infected wounds, which can reduce the inflammatory period (through the use of gentamycin sulfate (GS)) and enhance the granulation stage (through the addition of platelet-rich plasma (PRP)). Herein, the sustained antimicrobial CMC/GMs@GS/PRP wound dressings were developed by using gelatin microspheres (GMs) loading GS and PRP, covalent bonding to carboxymethyl chitosan (CMC). The prepared dressings exhibited high water uptake capability, appropriate porosity, excellent mechanical properties, sustain release of PRP and GS. Meanwhile, the wound dressing showed good biocompatibility and excellent antibacterial ability against Gram-negative and Gram-positive bacteria. Moreover, in vivo experiments further demonstrated that the prepared dressings could accelerate the healing process of E. coli and S. aureus-infected full-thickness wounds i n vivo, reepithelialization, collagen deposition and angiogenesis. In addition, the treatment of CMC/GMs@GS/PRP wound dressing could reduce bacterial count, inhibit pro-inflammatory factors (TNF-α, IL-1β and IL-6), and enhance anti-inflammatory factors (TGF-β1). The findings of this study suggested that biocompatible wound dressings with dual release of GS and PRP have great potential in the treatment of chronic and infected wounds.


2021 ◽  
Author(s):  
Katerina Menclová ◽  
Petr Svoboda ◽  
Jan Hadač ◽  
Štefan Juhás ◽  
Jana Juhásová ◽  
...  

ABSTRACT Background Nanofiber wound dressings remain the domain of in vitro studies. The purpose of our study was to verify the benefits of chitosan (CTS) and polylactide (PLA)-based nanofiber wound dressings on a porcine model of a naturally contaminated standardized wound and compare them with the conventional dressings, i.e., gauze and Inadine. Material and Methods The study group included 32 pigs randomized into four homogeneous groups according to the wound dressing type. Standardized wounds were created on their backs, and wound dressings were regularly changed. We evaluated difficulty of handling individual dressing materials and macroscopic appearance of the wounds. Wound swabs were taken for bacteriological examination. Blood samples were obtained to determine blood count values and serum levels of acute phase proteins (serum amyloid A, C-reactive protein, and haptoglobin). The crucial point of the study was histological analysis. Microscopic evaluation was focused on the defect depth and tissue reactions, including formation of the fibrin exudate with neutrophil granulocytes, the layer of granulation and cellular connective tissue, and the reepithelialization. Statistical analysis was performed by using SPSS software. The analysis was based on the Kruskal–Wallis H test and Mann–Whitney U test followed by Bonferroni correction. Significance was set at P < .05. Results Macroscopic examination did not show any difference in wound healing among the groups. However, evaluation of histological findings demonstrated that PLA-based nanofiber dressing accelerated the proliferative (P = .025) and reepithelialization (P < .001) healing phases, while chitosan-based nanofiber dressing potentiated and accelerated the inflammatory phase (P = .006). No statistically significant changes were observed in the blood count or acute inflammatory phase proteins during the trial. Different dynamics were noted in serum amyloid A values in the group treated with PLA-based nanofiber dressing (P = .006). Conclusion Based on the microscopic examination, we have documented a positive effect of nanofiber wound dressings on acceleration of individual phases of the healing process. Nanofiber wound dressings have a potential to become in future part of the common wound care practice.


Sign in / Sign up

Export Citation Format

Share Document