Thermal Behavior of Clay/Epoxy Nanocomposites

2012 ◽  
Vol 21 ◽  
pp. 23-28
Author(s):  
Artur S.C. Leal ◽  
Carlos José de Araújo ◽  
Suédina Maria L. Silva ◽  
Antônio Gilson Barbosa de Lima

In this work, the effect of curing agent, curing conditions and the incorporation of small amounts of organoclay on the thermal properties of DGEBA (diglycidyl ether of bisphenol A) epoxy resin was evaluated in order to develop an epoxy system for application as the matrix in active composites whose dispersed phase consists of shape memory alloy wires. The DGEBA resin was prepared using three amine derivatives as hardeners (triethylenetetramine - TETA, diethylenetriamine - DETA and diaminodiphenylsulfone - DDS) under varied curing conditions, in the absence and presence of organoclay. Epoxy systems were characterized by dynamic mechanical analysis (DMA), optical microscopy and X-ray diffraction. According to the obtained results, the cured DETA and DDS epoxy systems at elevated temperatures, above 180°C, showed a higher glass transition temperature (Tg) and thermal stability values than the system cured at low temperature (TETA). In addition, when the post-cure treatment was used, an improvement of the thermal stability was verified. When 1 phr (parts hundred resin) of organoclay was incorporated in DETA and DDS cured epoxy systems and post-cured, either the increase in the Tg and thermal stability values were more significant, especially for the system cured with DDS. Hence, the epoxy/DDS/organoclay system (exfoliated nanocomposite) is the most appropriate to be used as the matrix in the preparation of active composites since this matrix is thermally stable in the Ni-Ti shape memory alloy working range whose phase transformation occurs between 70 and 80 °C.

2016 ◽  
Vol 852 ◽  
pp. 28-32
Author(s):  
Ai Lian Liu ◽  
Nan Nan Mao ◽  
Jia Wen Xu ◽  
Wei Cai

The effect of rare earth element Ce addition on the microstructure and martensitic transformation behavior of Ti51Ni49 shape memory alloy was investigated by scanning electronic microscope (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The results show that the microstructure of TiNiCe ternary alloy consists of Ti2Ni phase, CeNi phase and the matrix. One-step martensitic transformation is observed in quenched TiNiCe ternary alloys, which is the same as that in quenched TiNi binary alloys. The martensitic transformation temperatures of Ti-rich TiNi alloy hardly increase with Ce addition.


2018 ◽  
Vol 24 (02) ◽  
pp. 22-25
Author(s):  
Dovchinvanchig M ◽  
Chunwang Zhao

The nanocrystal, phase transformation and microstructure behavior of Ni50Ti50 shape memory alloy was investigated by scanning electronic microscope, X-ray diffraction and differential scanning calorimetry. The results showed that the microstructure of Ni-Ti binary alloy consists of the NiTi2 phase and the NiTi matrix phase. One-step phase transformation was observed alloy.


2015 ◽  
Vol 18 (suppl 2) ◽  
pp. 35-38 ◽  
Author(s):  
Piter Gargarella ◽  
Cláudio Shyinti Kiminami ◽  
Eric Marchezini Mazzer ◽  
Régis Daniel Cava ◽  
Leonardo Albuquerque Basilio ◽  
...  

2021 ◽  
Vol 1019 ◽  
pp. 3-11
Author(s):  
Niranjan Pattar ◽  
S.F. Patil ◽  
Pratik Patil ◽  
Iranna Anikivi ◽  
Shridhar Hiremath

Embedding smart materials in the composite to enhance mechanical strength have become a research hotspot owing to their unique properties. The present research also focus on novel way to fabricate composite by embedding Shape Memory Alloy (SMA) wire and montmorillonite (MMT) nanoclay by varying clay concentration (0-7 wt.%). The extent of dispersion of nanoclay in epoxy resin was studied using Transmission Electron Microscopy (TEM) and X-ray diffraction (XRD). Fabricated samples were examined for tensile, flexural and impact characteristics. Scanning Electron Microscopy (SEM) was used to study the adhesion, delamination and damage occurred within the composite due to tensile loading. Results shows that the tensile strength, flexural strength and impact energy of SMA/MMT/glass/epoxy composite was improved by 23%, 21% and 57% respectively, when it was compared with composite with glass/epoxy composite.


2000 ◽  
Author(s):  
Hungyu Tsai ◽  
Xinjian Fan

Abstract The axisymmetric elastic deformations in shape memory alloy (SMA) fiber reinforced composites are studied. We analyze the stress concentration near the interface between the fiber and the matrix as a result of a pre-described phase transformation in the active fiber. A typical model involving a single infinite fiber embedded in an infinite elastic matrix is studied. A portion of the fiber is allowed to undergo phase transformation along the axial direction so that its length is changed by the corresponding transformation strain (typically a few percentages), while the matrix is assumed to be linearly elastic and isotropic. Under certain bonding conditions, the deformation of fiber forces the matrix to deform in the elastic regime in order to accommodate the transformation strains. The problem is formulated as axisymmetric deformations coupled with a finite transformation region in the fiber. In order to avoid infinite stresses found under perfect bonding conditions, we adopt a “spring” model which accounts for the elasticity of a transition layer at the interface. This model allows for relative displacements between the fiber and the matrix. A linear relation between this relative displacement and the shear stress is used. The exact elasticity solution (in integral form) to this problem is found using Love’s stress function and Fourier transform. Numerical integration is performed to produce the stress distributions. In particular, the shear load transfer profiles along the interface are calculated for various spring stiffness. It is found that the singularity is eliminated and the stress concentration factor depends on the stiffness of the transition layer.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4203
Author(s):  
Avraham I. Bram ◽  
Irina Gouzman ◽  
Asaf Bolker ◽  
Noam Eliaz ◽  
Ronen Verker

Thermally activated shape memory polymers (SMPs) can memorize a temporary shape at low temperature and return to their permanent shape at higher temperature. These materials can be used for light and compact space deployment mechanisms. The control of transition temperature and thermomechanical properties of epoxy-based SMPs can be done using functionalized polyhedral oligomeric silsesquioxane (POSS) additives, which are also known to improve the durability to atomic oxygen in the space environment. In this study, the influence of varying amounts of two types of POSS added to epoxy-based SMPs on the shape memory effect (SME) were studied. The first type contained amine groups, whereas the second type contained epoxide groups. The curing conditions were defined using differential scanning calorimetry and glass transition temperature (Tg) measurements. Thermomechanical and SME properties were characterized using dynamic mechanical analysis. It was found that SMPs containing amine-based POSS show higher Tg, better shape fixity and faster recovery speed, while SMPs containing epoxide-based POSS have higher crosslinking density and show superior thermomechanical properties above Tg. This work demonstrates how the Tg and SME of SMPs can be controlled by the type and amount of POSS in an epoxy-based SMP nanocomposite for future space applications.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1726 ◽  
Author(s):  
Yapeng Mao ◽  
Qiuying Li ◽  
Chifei Wu

Surface modification fundamentally influences the morphology of polyethylene terephthalate (PET) fibers produced from abandoned polyester textiles and improve the compatibility between the fiber and the matrix. In this study, PET fiber was modified through solution dip-coating using a novel synthesized tetraethyl orthosilicate (TEOS)/KH550/ polypropylene (PP)-g-MAH (MPP) hybrid (TMPP). The PET fiber with TMPP modifier was exposed to the air. SiO2 particles would be hydrolyzed from TEOS and become the crystalline cores of MPP. Then, the membrane formed by MPP, SiO2 and KH550 covered the surface of the PET fiber. TMPP powder was investigated and characterized by fourier transform infrared spectroscopy, scanning electron microscope (SEM) and thermogravimetric analysis (TGA). TMPP-modified PET fiber was researched by X-ray diffraction and SEM. Furthermore, tensile strength of single fiber was also tested. PET fiber/PP composites were studied through dynamic mechanical analysis and SEM. Flexural properties of composites were also measured. The interfacial properties of PET fiber and PP matrix were indirectly represented by contact angle analysis. Results showed that the addition of TEOS is helpful in homogenizing the distribution of PP-g-MAH. Furthermore, TMPP generates an organic-inorganic ‘armor’ structure on PET fiber, which can make up for the damage areas on the surface of PET fiber and strengthen each single-fiber by 14.4%. Besides, bending strength and modulus of TMPP-modified PET fiber-reinforced PP composite respectively, increase by 10 and 800 MPa. The compatibility between PET fiber and PP was also confirmed to be increased by TMPP. Predictably, this work supplied a new way for PET fiber modification and exploited its potential applications in composites.


Author(s):  
Niloufar Bagheri ◽  
Mahmood M Shokrieh ◽  
Ali Saeedi

The effect of NiTi alloy long wires on the viscoelastic behavior of epoxy resin was investigated by utilizing the dynamic mechanical analysis (DMA) and a novel micromechanical model. The present model is capable of predicting the viscoelastic properties of the shape-memory-alloy (SMA) reinforced polymer as a function of the SMA volume fraction, initial martensite volume fraction, pre-strain level in wires, and the temperature variations. The model was verified by conducting experiments. Good agreement between the theoretical and experimental results was achieved. A parametric study was also performed to investigate the effect of SMA parameters. According to the results, by the addition of a small volume fraction of SMA, the storage modulus of the composite increases significantly, especially at higher temperatures. Moreover, applying a 4% pre-strain caused a 10% increase in the maximum value of the loss factor of the SMA reinforced epoxy in comparison with the 0% pre-strained SMA reinforced epoxy.


Sign in / Sign up

Export Citation Format

Share Document