Multilayer ZrO2 Precursor Coated Polystyrene Particles

2007 ◽  
Vol 280-283 ◽  
pp. 529-532
Author(s):  
Yu Jia ◽  
Yuji Hotta ◽  
Kimiyasu Sato ◽  
Koji Watari ◽  
Lennart Bergström

Monodispersed ZrO2 (includes 8mol % Y2O3) precursor nanoparticles, which were well dispersed in aqueous solution, were successfully synthesized. The as-synthesized ZrO2 precursor nanoparticles were homogenously coated on the surface of polystyrene particles. Multilayer coating process was successfully implemented by using polyacrylic acid (PAA) to modify the surface charges of the coated particles, which was characterized by zeta-potential, particles size distribution and scanning electron microscopy (SEM).

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Mingjie Ma ◽  
Guanyu Wang ◽  
Zhengpeng Yang ◽  
Shanxiu Huang ◽  
Weijie Guo ◽  
...  

Solid waste red mud was modified by HCl leaching. The structure property and composition of modified red mud were investigated by X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET). Under UV irradiation, methyl orange (MO) aqueous solution was photodegraded by modified red mud. The obtained results showed that the specific surface area of modified red mud was 317.14 m2/g, which was about 40 times higher than that of the normal red mud. After UV irradiation for 50 min, the removal percentage of MO reached 94.2%. The study provided a novel way for the application of red mud to the photocatalytic degradation of organic wastes.


Microscopy ◽  
2016 ◽  
Vol 65 (suppl 1) ◽  
pp. i17.1-i17
Author(s):  
Toshiko Yamazawa ◽  
Naotoshi Nakamura ◽  
Yoshinori Mikami ◽  
Hiroshi Sekiya ◽  
Mari Sato ◽  
...  

2015 ◽  
Vol 46 (5) ◽  
pp. 1872-1882 ◽  
Author(s):  
NASSIRHADJY MEMTILY ◽  
TOMOKO OKADA ◽  
TATSUHIKO EBIHARA ◽  
MARI SATO ◽  
ATSUSHI KURABAYASHI ◽  
...  

Author(s):  
Niwash Kumar

Abstract: The purpose of this study was to prepare Pyridostigmine nanoparticles for control release of Pyridostigmine to improve the oral bioavailability, enhance the solubility and dissolution rate by decreasing particle size of drug. Infrared spectroscopic studies confirmed that there was no interaction between drug and polymers. The controlled release Pyridostigmine nanoparticles were prepared by Solvent evaporation by using Ethyl cellulose, Chitosan & HPMC K100 at different ratios. The production yield of the formulated controlled release nanoparticles (F1 to F16) in the range of 76.11 % to 83.58 %. The drug content of the formulated controlled release nanoparticles (F1 to F16) in the range of 82.56 %to 98.20%. The Theoretical loading of the formulated controlled release nanoparticles (F1- F16) in the range of 24.43 % to 64.24%. The entrapment efficiency increased with increasing the concentration of polymers and the formulations containing chitosan nanoparticles F6 (1:2) showed better entrapment (90.94%) among all formulation. The solubility of selected formulation (F6) in 0.2 M Phosphate buffer pH 6.8 increased when compared to pure drug. Particle size distribution was determined by Malvern zeta size, the size range for produced nanoparticles in the range of 200 nm to 400 nm. The Polydispersity index of selected nanoparticle formulation (F6) was indicated a narrow range and a homogeneous size distribution of particles. The in vitro dissolution study was carried out in 0. 2N PBS for 2 hours and phosphate buffer pH 6.8 for 10 hours. The formulations shows controlled release of drug up to 12 hrs and all formulations showed more than 75% of drug release. The release kinetics showed that the formulations were complies with Zero order kinetics followed by diffusion controlled mechanism. The best formulation F6 was evaluated by infrared spectroscopy, particle size, Polydispersity index & zeta potential and Scanning Electron microscopy. Best formulation of nanoparticles shown the extent of drug release was found to be F6 (96.93%) in 12 hrs. SEM studies confirmed the morphology of the nanoparticle formulation. Keywords: Polydispersity index, Zeta potential, Scanning Electron microscopy, Pyridostigmine


2021 ◽  
Vol 43 (1) ◽  
pp. 14-14
Author(s):  
Fazal Akbar Jan Fazal Akbar Jan ◽  
Muhammad Aamir Muhammad Aamir ◽  
Naimat Ullah and Husaain Gulab Naimat Ullah and Husaain Gulab

The synthesized oxide (SnO2) nanoparticles by sol-gel method were characterized using UV-Visible spectroscopy (UV-Vis), Fourier Transform Infrared spectroscopy (FTIR), X-rays diffraction(XRD) and Scanning electron microscopy(SEM). Using X-rays diffraction analysis different parameter were calculated such as crystallite size, d-spacing, dislocation density, number of unit cell, cell volume, morphological index, micro strain and instrumental broadening. The average particle size was 28.396 nm. Scanning electron microscopy revealed that SnO2 nanopartcles are uniformly distributed. Optical properties such as band gap (energy gap = 3.6 eV) was calculated from UV-Visible spectroscopy. The characterized particles were used as photocatalyst for the degradation of Eosin dye in aqueous solution under UV light. The effect of different parameters i.e irradiation time, initial dye concentration, pH of the medium and catalyst weight on percent degradation was also studied. Mmaximum dye degradation was found at 220 minutes time interval that was 92 % using 10 ppm solution. At pH 5 the degradation of dye was found to be 94%. The catalyst dose of 0.06 g was found to be the optimum weight for the best photo catalytic degradation of Eosin Y.


2016 ◽  
Vol 61 (2) ◽  
pp. 1221-1227
Author(s):  
T. Ratajski ◽  
I. Kalemba-Rec ◽  
B. Dubiel

Abstract The SiO2 and Ni/SiO2 coatings were electrophoretically deposited on X2CrNiMo17-12-2 steel using ethanol-based suspensions of the SiO2 and Ni powders. The influence of the zeta potential and concentration of the suspensions, the applied voltage and deposition time on the quality of the coatings was studied. Microstructure of the plan-view and cross sections of the coatings was investigated using scanning electron microscopy. The plan-view images revealed the uniform microstructure of the coatings with sporadically observed cracks, pores as well SiO2 and Ni agglomerates. On the cross-sections, the Cr2O3 layer, resulted from oxidation of the substrate during sintering of the coatings was observed. The polarization tests have shown that SiO2 and Ni/SiO2 coatings improve the corrosion resistance of the X2CrNiMo17-12-2 steel in 3.5% NaCl aqueous solution.


2011 ◽  
Vol 284-286 ◽  
pp. 781-785 ◽  
Author(s):  
Shi Cai Cui ◽  
Da Feng Zhang ◽  
Xi Peng Pu ◽  
Xian Hua Qian ◽  
Tian Tian Ge ◽  
...  

ZnO were rapidly synthesized using different zinc salts (Zn(NO3)2, Zn(CH3CO2)2, ZnCl2and ZnSO4) by an aqueous solution method at 90°C. The products were characterized by X-ray diffractometry and scanning electron microscopy. The results show that the anions have remarkable effects on the morphologies of ZnO. When Zn(NO3)2, Zn(CH3CO2)2or ZnCl2was used, ZnO was obtained with ellipsoidal, under-developed ellipsoidal and nano-particles morphologies, respectively. In the case of ZnSO4, layered basic zinc sulfate was obtained. The remarkable effects of anions on ZnO can be ascribed to the adsorption of the anions on the surface of ZnO, which hinders the further growth of ZnO nuclei. The effect of SO42-was further investigated by changing the mole ratio of SO42-to NO3-.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Serpil Edebali

New nanocomposite sorbents were synthesized and used for Cr(VI) removal from aqueous solution by modifying Turkish perlite withα-MnO2(PAM) andγ-Fe2O3(PGI) nanoparticles. Nanocomposite sorbents were characterized using scanning electron microscopy (SEM) and FTIR. The effects of several parameters such as contact time, amount of sorbent, pH, and concentration were investigated and it was found that the sorption capacity for Cr(VI) was found to be highly pH dependent. Also the experimental data were evaluated in terms of different isotherm models. The data of PGI were well fit to DR isotherm model whereas PAM data were well described with Temkin isotherm model. The sorption capacities were found to be 8.64 and 7.6 mg g−1for PGI and PAM, respectively. This confirms that these nanocomposites retain the constituent nanoparticle properties while being macroscopic particles suitable for chromium removal in water treatment.


2007 ◽  
Vol 121-123 ◽  
pp. 113-116
Author(s):  
Yi Yang Zhao ◽  
X. Li ◽  
C. Wang ◽  
L.J. Li

The effects of an organic solvent on the electrospinning of water-soluble polyacrylamide with ultrahigh molecular weight were investigated. An organic solvent, DMF, was introduced to the polyacrylamide aqueous solution and subsequently, transparent spinning solutions were obtained. The spinning solution was electrospun at the voltage of 10 kV and the electrospun products were examined by scanning electron microscopy (SEM). Results indicated that all the electrospinning products including colloidal particles, beaded fibers and smooth fibers were fabricated in the DMF/H2O bi-component solvent and the morphology of electrospun products changed from smooth fiber to beaded fiber with the increasing amount of DMF used.


Sign in / Sign up

Export Citation Format

Share Document