Influence of Acidity in Wet-Chemical Synthesis on the Joint of Nano-Sized β-Tricalcium Phosphate Particles with Collagen Fibrils in Their Composites

2006 ◽  
Vol 309-311 ◽  
pp. 585-588
Author(s):  
Chao Zou ◽  
Wen Jian Weng ◽  
Xu Liang Deng ◽  
Kui Cheng ◽  
Xin Zhi Wang ◽  
...  

β-tricalcium phosphate (β-TCP)/collagen composites are in the limelight for their biomedical applications. It is believed that joint status of β-TCP particles with collagen fibrils plays key roles in both osteoconductivity and biodegradability of composites. In this work, the influence of acidity during synthesis on the joint status between nano-sized β-TCP particles and collagen fibrils is investigated. The composites are characterized by X-ray diffractometer and Field Emission Scanning Electron Microscope. The results show that the joint status of nano-sized β-TCP particles with collagen fibrils in the composites depends on the acidity in collagen suspensions. A desired joint status with obvious disassembled collagen fibril, good particle dispersion and strong boding between the particles and the fibrils could be obtained when acidity of the collagen suspension is pH 2.

2016 ◽  
Vol 869 ◽  
pp. 913-917 ◽  
Author(s):  
Ana Lucia do Amaral Escada ◽  
Javier Andres Muñoz Chaves ◽  
Ana Paula Rosifini Alves Claro

The purpose of this study was to evaluate the TiO2 nanotubes growth and the variation in its diameter to improve the surface properties of Ti-7.5Mo to use for biomedical applications. For the nanotubes TiO2 growth, the samples were anodized in glycerol and ammonium fluoride and divided according to the anodizing potential at 5V to 10V and 24 hour time. The surfaces were examined by scanning electron microscope (SEM), X-ray analysis (XRD) and contact angle measurements. The average tube diameter, ranging in size from 13 to 23 nm, was found to increase with increasing anodizing voltage. It was also observed a decrease in contact angle in accordance with the increase in the anodizing potential. The X-ray analysis showed the presence of anatase phase in samples whose potential was 10V and this condition represents a simple surface treatment for Ti-7.5Mo alloy that has high potential for biomedical applications.


2013 ◽  
Vol 667 ◽  
pp. 48-52
Author(s):  
C.H. Rosmani ◽  
Saifollah Abdullah ◽  
Mohamad Rusop

The synthesis of Cadmium Selenide (CdSe) by using wet chemical synthesis replace organometallic method. The oleic acid using as the capping agent for CdSe nanocrystals. Paraffin liquid using as solvent for Se and Cd precursor. In this paper, the optical properties at different time was investigated. For optical properties, photoluminescence spectroscopy (PL) was used and for surface morphology field emission scanning electron microscope (FESEM). This paper describe the effect of CdSe properties at different certain time.


2013 ◽  
Vol 685 ◽  
pp. 119-122 ◽  
Author(s):  
Tahseen H. Mubarak ◽  
Karim H. Hassan ◽  
Zena Mohammed Ali Abbas

The application of nanoparticles in the processes of making commercial products has increased in recent years due to their unique physical and chemical properties. Materials whose crystallites, particle sizes are smaller than 100 nm are commonly named nanocrystalline, nanostructured, nanosized materials. There are many methods used for the preparation of nanomaterials. We use is a method which is easy if compared to other methods with the chemicals required for these methods are available and cheap. Nano zinc oxide has been prepared by wet chemical method from zinc nitrate and using sodium bicarbonate as precipitation agent. The resulting nanopowders were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM).The particle size measurement using XRD Scherer’s formula calculations confirms that the crystallite size of the ZnO nanoparticles range from 41 to 67 nm and depending on calcinations temperature. SEM micrographs reveals less number of pores with smaller lump size in addition to clearly showing the micro structural homogeneity and remarkably dense mode of packing of grains of ZnO nanoparticles with minimum porosity.


Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


Author(s):  
Marc H. Peeters ◽  
Max T. Otten

Over the past decades, the combination of energy-dispersive analysis of X-rays and scanning electron microscopy has proved to be a powerful tool for fast and reliable elemental characterization of a large variety of specimens. The technique has evolved rapidly from a purely qualitative characterization method to a reliable quantitative way of analysis. In the last 5 years, an increasing need for automation is observed, whereby energy-dispersive analysers control the beam and stage movement of the scanning electron microscope in order to collect digital X-ray images and perform unattended point analysis over multiple locations.The Philips High-speed Analysis of X-rays system (PHAX-Scan) makes use of the high performance dual-processor structure of the EDAX PV9900 analyser and the databus structure of the Philips series 500 scanning electron microscope to provide a highly automated, user-friendly and extremely fast microanalysis system. The software that runs on the hardware described above was specifically designed to provide the ultimate attainable speed on the system.


Arena Tekstil ◽  
2013 ◽  
Vol 28 (1) ◽  
Author(s):  
Maya Komalasari ◽  
Bambang Sunendar

Partikel nano TiO2 berbasis air dengan pH basa telah berhasil disintesis dengan menggunakan metode sol-gel dan diimobilisasi pada kain kapas dengan menggunakan kitosan sebagai zat pengikat silang. Sintesis dilakukan  dengan prekursor TiCl4 pada konsentrasi 0,3 M, 0,5 M dan 1 M, dan menggunakan templat kanji dengan proses kalsinasi pada suhu 500˚C selama 2 jam. Partikel nano TiO2 diaplikasikan ke kain kapas dengan metoda pad-dry-cure dan menggunakan kitosan sebagai crosslinking agent. Berdasarkan hasil Scanning Electron Microscope (SEM),diketahui bahwa morfologi partikel TiO2 berbentuk spherical dengan ukuran nano (kurang dari 100 nm). Karakterisasi X-Ray Diffraction (XRD) menunjukkan adanya tiga tipe struktur kristal utama, yaitu (100), (101) dan (102) dengan fasa kristal yang terbentuk adalah anatase dan rutile. Pada karakterisasi menggunakan SEM terhadap serbuk dari TiO2 yang telah diaplikasikan ke permukaan kain kapas, terlihat adanya imobilisasi partikel nano TiO2 melalui ikatan hidrogen silang dengan kitosan pada kain kapas. Hasil analisa tersebut kemudian dikonfirmasi dengan FTIR (Fourier Transform Infra Red) yang hasilnya memperlihatkan puncak serapan pada bilangan gelombang 3495 cm-1, 2546 cm-1, dan 511 cm-1,  yang masing-masing diasumsikan sebagai adanya vibrasi gugus fungsi O-H, N-H dan Ti-O-Ti. Hasil SEM menunjukkan pula bahwa kristal nano yang terbentuk diantaranya adalah fasa rutile , yang berdasarkan literatur terbukti dapatberfungsi sebagai anti UV.


Author(s):  
Y. N. Hua ◽  
Z. R. Guo ◽  
L. H. An ◽  
Shailesh Redkar

Abstract In this paper, some low yield cases in Flat ROM device (0.45 and 0.6 µm) were investigated. To find killer defects and particle contamination, KLA, bitmap and emission microscopy techniques were used in fault isolation. Reactive ion etching (RIE) and chemical delayering, 155 Wright Etch, BN+ Etch and scanning electron microscope (SEM) were used for identification and inspection of defects. In addition, energy-dispersive X-ray microanalysis (EDX) was used to determine the composition of the particle or contamination. During failure analysis, seven kinds of killer defects and three killer particles were found in Flat ROM devices. The possible root causes, mechanisms and elimination solutions of these killer defects/particles were also discussed.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4045
Author(s):  
Rafał Mech ◽  
Jolanta Gąsiorek ◽  
Amadeusz Łaszcz ◽  
Bartosz Babiarczuk

The paper presents a comparison of the results of the corrosion resistance for three Fe-B-Co-Si-based newly developed alloys with the addition of Nb and V. The corrosion performance differences and microstructure variations were systematically studied using scanning electron microscope, electric corrosion equipment, X-ray diffractometer, and differential calorimeter. It has been shown that each alloying addition increased the corrosion resistance. The highest corrosion resistance obtained by potentiodynamic polarization was found for the alloy with both Nb and V addons (Fe57Co10B20Si5Nb4V4) and lowest in the case of the basic four-element Fe62Co15B14Si9 material. This shows that the proper choice of additions is of significant influence on the final performance of the alloy and allows tailoring of the material for specific applications.


Sign in / Sign up

Export Citation Format

Share Document