Development of Biaxial Servo Controlled Fatigue Testing System

2006 ◽  
Vol 321-323 ◽  
pp. 57-62 ◽  
Author(s):  
Akira Shimamoto ◽  
Do Yeon Hwang ◽  
Tetsuya Nemoto

Destructive accident sometimes takes place though the equivalent stress is rather low in the viewpoint of strength of materials. The propagation of fatigue cracks under multi-axial stress state and cycling load gives the reason. Fatigue fracture has been considered as one of the most commonly encountered industrial problems that lead to the damage of components in engineering products. In general, the machine structure is always under stress concentration or stress cycles. Moreover, the structure material is usually under two axes or multi-axial stresses instead of uniaxial stress state. It is important, therefore, to clarify the propagation behavior and the fatigue failure problem of the crack under the multi-axial stresses and cycling load from the safety reliability and accident prevention measure. In this study, a biaxial fatigue experimental device was developed which can carry out a wide range of fatigue tests under biaxial stresses. The developed experimental device was identified with a biaxial fatigue experiments including static uniaxial and biaxial tensile test by using the aluminum alloy flat plate as specimens. The propagation behavior of fatigue crack for center notched cruciform specimen in the equal biaxial fatigue test was verified.

2005 ◽  
Vol 127 (1) ◽  
pp. 58-64 ◽  
Author(s):  
Tommy J. George ◽  
M.-H. Herman Shen ◽  
Onome Scott-Emuakpor ◽  
Theodore Nicholas ◽  
Charles J. Cross ◽  
...  

A new vibration-based fatigue testing methodology for assessing high-cycle turbine engine material fatigue strength at various stress ratios is presented. The idea is to accumulate fatigue energy on a base-excited plate specimen at high frequency resonant modes and to complete a fatigue test in a much more efficient way at very low cost. The methodology consists of (1) a geometrical design procedure, incorporating a finite-element model to characterize the shape of the specimen for ensuring the required stress state/pattern; (2) a vibration feedback empirical procedure for achieving the high-cycle fatigue experiments with variable-amplitude loading; and finally (3) a pre-strain procedure for achieving various uniaxial stress ratios. The performance of the methodology is demonstrated with experimental results for mild steel, 6061-T6 aluminum, and Ti-6Al-4V plate specimens subjected to a fully reversed bending, uniaxial stress state.


2021 ◽  
Vol 68 (2) ◽  
Author(s):  
Michael Jüttner ◽  
Stephan Tremmel ◽  
Martin Correns ◽  
Sandro Wartzack

For the assessment of a rolling contact, knowledge about the inhomogeneous multi-axial stress state as well as the limitations of available equivalent stress hypotheses are important. Therefore, this paper examines the multi-axial stress state using the example of the HERTZian contact ball/plane in order to derive the stress history for the frictionless rolling contact. Finally, the oppor tunities and limitations of the use of equivalent stresses are shown using the maximum distortion criterion as an example.


Author(s):  
Kumarswamy Karpanan ◽  
William Thomas

Failure strain at any point on a structure is not a constant but is a function of several factors, such as stress state, strain rate, and temperature. Failure strain predicted from the uniaxial tensile testing cannot be applied to the bi-axial or tri-axial stress state. ASME Sec VIII-Div-2, and −3 codes give methods to predict the failure strain for multi-axial stress state by considering the triaxiality factor, which is defined as the ratio of mean stress to the equivalent stress. Failure strain predicted by the ASME method (based on the Rice-Tracey ductile failure model) is an exponential curve that relates the failure strain to the triaxiality factor. The ASME VIII-3 method also gives procedures to calculate failure strain for various material types: ferritic, stainless steel, nickel alloy, aluminum, etc. Experimental results of failure strain at various stress states show that the failure strain is not only a function of the triaxiality factor, but also a function of the Lode angle. The Lode angle takes on the value of 1, 0, and −1 for tension, pure shear, and compression stress state, respectively. Experimental data shows that the failure strain is a 3D surface which has an exponential relation with triaxiality and a parabolic relation with the Lode angle. To validate the ASME failure strain prediction, this paper compares experimental failure strain test data from literature with the ASME predictions. The ASME predictions are non-conservative especially for moderately ductile materials such as aluminum and high strength carbon steel. A reduction factor on failure strain for low ductile material is presented using the relation between the R (yield/ultimate) and the stress ratio (shear/tensile stress). The ASME method does not account for the environmental effects while calculating the failure strain. High pressure, high temperature (HPHT) subsea components designed using ASME VIII-3 code are subjected to various environments in subsea, such as seawater, seawater with cathodic protection (CP) and production fluid (crude oil). Experimental data shows that the Elongation (EL) and/or Reduction in Area (RA) from tensile testing decrease in these environments. Therefore, to account for any environment effect on the failure strain, reduced EL and RA can be used to predict the failure strain.


2003 ◽  
Vol 17 (08n09) ◽  
pp. 1329-1334 ◽  
Author(s):  
Sang Yeob Oh ◽  
Hyung Seop Shin ◽  
Chang Min Suh

In applications of brittle materials such as soda-lime glass and ceramics, they are usually subjected to a multi-axial stress state. Brittle materials with cracks or damage caused by foreign impacts are apt to fracture abruptly from cracks because of their low fracture toughness. Depending upon the crack pattern developed, the strength using a multi-axial stress state might be different from the one using a uniaxial stress. As a result, when a small size crack was introduced by Vicker's indentation, the residual strength using a biaxial stress state obtained by the ball-on-ring test was greater than that using a uniaxial stress by the 4-point bending test. In the case of the specimens cracked by a spherical impact, there was overall decrease in the bending strength with increasing an impact velocity.


1961 ◽  
Vol 34 (2) ◽  
pp. 506-526 ◽  
Author(s):  
S. D. Gehman ◽  
P. Rohall ◽  
D. I. Livingston

Abstract Extensive fatigue tests of vulcanizates of natural rubber and SBR were carried out using a cycle of alternate stretching in two perpendicular directions. It is shown that the data can be best handled statistically by assuming a lognormal distribution or by the use of extreme probability techniques. Illustrative results are given to compare the fatigue life of different types of SBR ; to show the value of the method for studying the effects of processing variations on fatigue life ; to determine the effect of various loadings of different types of carbon black; and to evaluate the effectiveness of anitoxidants and antiozonants. Exploratory tests using ozone instead of pinholes to initiate the failure eliminated the wide range in fatigue life between natural rubber and SBR, and in this respect gave a result which is more consistent with general service experience. This type of biaxial fatigue testing has many areas of usefulness for developing good endurance qualities in vulcanizates.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3657
Author(s):  
Alexander E. Wilson-Heid ◽  
Erik T. Furton ◽  
Allison M. Beese

This study investigates the disparate impact of internal pores on the fracture behavior of two metal alloys fabricated via laser powder bed fusion (L-PBF) additive manufacturing (AM)—316L stainless steel and Ti-6Al-4V. Data from mechanical tests over a range of stress states for dense samples and those with intentionally introduced penny-shaped pores of various diameters were used to contrast the combined impact of pore size and stress state on the fracture behavior of these two materials. The fracture data were used to calibrate and compare multiple fracture models (Mohr-Coulomb, Hosford-Coulomb, and maximum stress criteria), with results compared in equivalent stress (versus stress triaxiality and Lode angle) space, as well as in their conversions to equivalent strain space. For L-PBF 316L, the strain-based fracture models captured the stress state dependent failure behavior up to the largest pore size studied (2400 µm diameter, 16% cross-sectional area of gauge region), while for L-PBF Ti-6Al-4V, the stress-based fracture models better captured the change in failure behavior with pore size up to the largest pore size studied. This difference can be attributed to the relatively high ductility of 316L stainless steel, for which all samples underwent significant plastic deformation prior to failure, contrasted with the relatively low ductility of Ti-6Al-4V, for which, with increasing pore size, the displacement to failure was dominated by elastic deformation.


2021 ◽  
pp. 096739112199822
Author(s):  
Ahmed I Abou-Kandil ◽  
Gerhard Goldbeck

Studying the crystalline structure of uniaxially and biaxially drawn polyesters is of great importance due to their wide range of applications. In this study, we shed some light on the behaviour of PET and PEN under uniaxial stress using experimental and molecular modelling techniques. Comparing experiment with modelling provides insights into polymer crystallisation with extended chains. Experimental x-ray diffraction patterns are reproduced by means of models of chains sliding along the c-axis leading to some loss of three-dimensional order, i.e. moving away from the condition of perfect register of the fully extended chains in triclinic crystals of both PET and PEN. This will help us understand the mechanism of polymer crystallisation under uniaxial stress and the appearance of mesophases in some cases as discussed herein.


2018 ◽  
Author(s):  
Lloyd A. Hackel ◽  
Jon E. Rankin

This paper reports substantially enhanced fatigue and corrosion-fatigue lifetimes of propulsion shaft materials, 23284A steel and 23284A steel with In625 weld overlay cladding, as a result of shot or laser peening. Glass reinforced plastic (GRP) coatings and Inconel claddings are used to protect shafts against general corrosion and corrosion pitting. However salt water leakage penetrating under a GRP can actually enhance pitting leading to crack initiation and growth. Fatigue coupons, untreated and with shot or laser peening were tested, including with simultaneous salt water immersion. Controlled corrosion of the surfaces was simulated with electric discharge machining (EDM) of deep pits enabling evaluation of fatigue and corrosion-fatigue lifetimes. Results specifically show high energy laser peening (HELP) to be a superior solution, improving corrosion-fatigue resistance of shaft and cladding metal, reducing the potential for corrosion pits to initiate fatigue cracks and dramatically slowing crack growth rates. At a heavy loading of 110% of the 23284A steel yield stress and with 0.020 inch deep pits, laser peening increased fatigue life of the steel by 1370% and by 350% in the corrosion-fatigue testing.


Sign in / Sign up

Export Citation Format

Share Document