Contact Damage Analysis of Hot Mill Spindle Assembly with Kinematics Simulation

2006 ◽  
Vol 326-328 ◽  
pp. 1121-1124 ◽  
Author(s):  
Seong Woo Byun ◽  
Young Shin Lee ◽  
Hyun Seung Lee ◽  
Je Jun Lee

The hot mill spindle assembly is the important component of the hot rolling process and used for transmission of rotational power. The contact surface between end coupling and slipper metal have high stress concentration due to operation interference. The life cycles of slipper metal are reduced by the contact surface damage. In this study, the structural analysis and kinematics simulation are performed by applying the various driving angle and dynamic boundary condition of the mill spindle assembly. This study aims to minimize the contact damage which might happen in the production process.

Author(s):  
Mauro G. Marinho ◽  
Alexandre M. Pope ◽  
Luiz Claudio Meniconi ◽  
Luiz Henrique M. Alves ◽  
Cesar Del Vecchio

Following the warning of a flooded bow horizontal brace of a semi-submersible production platform, an inspection diving team was mobilized and cracks were found at both bow and aft K-joints. Analysis of the service life of the platform, together with the results of structural analysis and local strain measurements, concluded that cracking was caused by fatigue initiated at high stress concentration points on the gusset plates inserted in the tubular joints. As a consequence of the fractured plates other cracks were nucleated close to the intersection lines of the braces that compose the K-joints. Based on this analysis different repair possibilities were proposed. To comply with the production goals of the Business Unit it was decided to repair the platform on-site and in production in agreement with the Classification Society. The proposed repair contemplated the installation of two flanges on the gusset plates between the diagonal braces by underwater wet (UWW) welding. Cracks at the gusset plates were also removed by grinding and wet welding. Defects located at the braces are being monitored and repaired by the installation of backing bars, by wet welding, followed by grinding and welding from the inside. To carry out the job two weld procedures and ten welder-divers were qualified.


1990 ◽  
Vol 196 ◽  
Author(s):  
Jiang Xinggang ◽  
Cui Jianzhong ◽  
Ma Longxiang

ABSTRACTCavity nucleation during superplastic deformation of a high strength aluminium alloy has been studied using a high voltage electron microscope and an optical microscope. The results show that cavities nucleation is due only to superplastic deformation and not to pre-existing microvoids which may be introduced during thermomechanical processing. The main reason for cavity nucleation is the high stress concentration at discontinuties in the plane of the grain boundary due to grain boundary sliding.


1987 ◽  
Vol 109 (3) ◽  
pp. 444-450 ◽  
Author(s):  
L. Houpert ◽  
E. Ioannides ◽  
J. C. Kuypers ◽  
J. Tripp

A recently proposed fatigue life model for rolling bearings has been applied to the study of lifetime reduction under conditions conducive to microspalling. The presence of a spike in the EHD pressure distribution produces large shear stresses localized very close to the surface which may account for early failure. This paper describes a parametric study of the effect of such spikes. Accurate stress fields in the volume are calculated for simulated pressure spikes of different height, width and position relative to a Hertzian pressure distribution, as well as for different lubricant traction coefficients and film thicknesses. Despite the high stress concentrations in the surface layers, reductions in life predicted by the model are modest. Typically, the pressure spike may halve the life, with the implication that subsurface fatigue still dominates. In corroboration of this prediction, preliminary experimental work designed to reproduce microspalling conditions shows that microindents due to overrolling particles are a much more common form of surface damage than microspalling.


Author(s):  
Tibor Kiss ◽  
Wing-Fai Ng ◽  
Larry D. Mitchell

Abstract A high-speed rotor wheel for a wind-tunnel experiment has been designed. The rotor wheel was similar to one in an axial turbine, except that slender bars replaced the blades. The main parameters of the rotor wheel were an outer diameter of 10“, a maximum rotational speed of 24,000 RPM and a maximum transferred torque of 64 lb-ft. Due to the working environment, the rotor had to be designed with high safety margins. The coupling of the rotor wheel with the shaft was found to be the most critical issue, because of the high stress concentration factors associated with the conventional coupling methods. The efforts to reduce the stress concentrations resulted in an advanced coupling design which is the main subject of the present paper. This new design was a special key coupling in which six dowel pins were used for keys. The key slots, now pin-grooves, were placed in bosses on the inner surface of the hub. The hub of the rotor wheel was relatively long, which allowed for applying the coupling near the end faces of the hub, that is, away from the highly loaded centerplane. The long hub resulted in low radial expansion in the coupling region. Therefore, solid contact between the shaft and the hub could be maintained for all working conditions. To develop and verify the design ideas, stress and deformation analyses were carried out using quasi-two-dimensional finite element models. An overall safety factor of 3.7 resulted. The rotor has been built and successfully accelerated over the design speed in a spin test pit.


Author(s):  
Fa´bio de Castro Marangone ◽  
Ediberto Bastos Tinoco ◽  
Carlos Eduardo Simo˜es Gomes

Coke drums are thin-walled pressure vessels that experience severe thermal cycling condition which consists of heating, filling and rapidly cooling the drum in a short period of time. After some years under operation, cracks at the vessel may occur, especially at high stress concentration areas such as the skirt support to shell attachment. During the filling phase of the cycle, when the empty and cooled coke drum is filled with hot oil, the shell and cone temperatures increase rapidly compared to the skirt temperature and the last is pushed outward, since its bottom is at lower temperature and fixed at a concrete base. During quenching (sudden cooling) phase, the coke drum is filled with water at about 80°C and tends to cool faster than the skirt, which is pulled inward until equilibrium is obtained. The skirt expansion and contraction movement results in bending stresses in axial direction on the top of skirt. As lower the switch temperature is, more severe is the bending effect. One of PETROBRAS delayed coke unit presented some operational problems at pre-heating phase, resulting in lower switch temperatures. This paper presents an analysis showing the influence of the switch temperature on coke drum fatigue life. At first, the transient loading conditions were established from thermocouple measurements at skirt attachment weld (hot box region). Later, a transient thermal analysis was performed with FEA and the temperature gradient at the skirt attachment during entire thermal cycle was obtained. The thermal results were then converted to a structural model which was solved for linear elastic stress including other loads such as pressure. Finally, the maximum stress components for both filling and quenching phases were determined and a complete stress range was calculated as per ASME Section VIII, Div 2. The procedure described above was applied for different switch temperatures scenarios in order to show its influence on the fatigue life of the coke drum.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7344
Author(s):  
Akikazu Shinya ◽  
Yoshiki Ishida ◽  
Daisuke Miura ◽  
Akiyoshi Shinya

A three-dimensional (3D) finite element (FE) model of the mandibular bone was created from 3D X-ray CT scan images of a live human subject. Simulating the clinical situation of implant therapy at the mandibular first molar, virtual extraction of the tooth was performed at the 3D FE mandibular model, and 12 different implant diameters and lengths were virtually inserted in order to carry out a mechanical analysis. (1) High stress concentration was found at the surfaces of the buccal and lingual peri-implant bone adjacent to the sides of the neck in all the implants. (2) The greatest stress value was approximately 6.0 MPa with implant diameter of 3.8 mm, approx. 4.5 MPa with implant diameter of 4.3 mm, and approx. 3.2 MPa with implant diameter of 6.0 mm. (3) The stress on the peri-implant bone was found to decrease with increasing length and mainly in diameter of the implant.


Author(s):  
Hyeon Su Kim ◽  
Sehwan Jeong ◽  
Dong Ju Lee ◽  
Ha Geun Kim ◽  
Sang Beom Shin

The purpose of this study is to evaluate the design verification of the welded type 45° lateral tee for the steam pipe in power plants. For it, first, the stress analysis was carried out under design condition in accordance with ASME Sec. VIII Div. 2 in order to evaluate the possible occurrence of plastic collapse and local failure. And next, the creep-fatigue damage analysis was performed under the normal operating condition in accordance with ASME Sec. III Subsection NH considering the service temperature of 566°C. From the results, it was found that the welded type 45° lateral tee satisfies the design criteria corresponding to the plastic collapse and the local failure. However, it has a probability of creep rupture during the design life due to the high stress localized in the crotch region. Therefore, a welded type 90° lateral tee was also evaluated with the same analysis procedures to consider the influence of the geometry at the crotch region. Based on the results, the welded type 90° lateral tee satisfies the design criteria of the plastic collapse, local failure and the creep-fatigue strength. This result indicated that an optimal shape design of the crotch region shall be required in order to secure the creep strength of the welded type 45° lateral tee having high service temperature.


1991 ◽  
Vol 113 (3) ◽  
pp. 398-401 ◽  
Author(s):  
A. Chaaban ◽  
U. Muzzo

Due to the high stress concentration at the root of the first active thread in threaded end closures of high pressure vessels, yielding may occur in this region during the application of the first pressure cycle or proof testing. This overstraining introduces residual stresses that influence the fatigue performance of the vessel. This paper presents a parametric analysis of threaded end closures using elastic and elasto-plastic finite element solutions. The results are used to discuss the influence of these residuals on the estimated fatigue life when the vessel is subjected to repeated internal pressure. A simple empirical method to allow for the Bauschinger effect of the material is also proposed.


Sign in / Sign up

Export Citation Format

Share Document