Fabrication and Characterization of Bioactive Composite Scaffolds Based on β-TCP-BG-PLA for Bone Tissue Engineering

2007 ◽  
Vol 330-332 ◽  
pp. 919-922 ◽  
Author(s):  
Na Ru Zhao ◽  
Ying Jun Wang ◽  
Xiao Feng Chen ◽  
Cheng Yun Ning

In this study, the bioactive composites based on β-tricalcium phosphate (β-TCP), bioglass (BG) and poly lactic acid (PLA) were prepared. The microstructure, degradability and reaction products of the scaffold soaked in a simulated body fluid (SBF) at 36.5°C for different days were characterized through scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDS), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR) and induced coupled plasma spectroscopy (ICP). The weight loss and strength decrease with the time were tested. The results showed that at the same porosity, the degradability of the scaffold samples decreased as followed: β-TCP/BG/PLA>β-TCP/BG>β-TCP.The materials had highly bioactive response ability to the Simulate Body Fluid (SBF) and promptly induced a bone like HA layer on the surface of the scaffolds when immersed in the SBF.

2007 ◽  
Vol 280-283 ◽  
pp. 1599-1604
Author(s):  
Kai Hui Nan ◽  
Ying Jun Wang ◽  
Xiao Feng Chen ◽  
Na Ru Zhao ◽  
L.Y. Wang

A porous bioglass reinforced tricalcium phosphate scaffold was prepared. The microstructure, degradability and reaction products of the scaffold after immersed in a simulated body fluid for different days were emphatically investigated using scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, Fourier transformed infrared spectroscopy and induced coupled plasma spectroscopy. The results showed that a homogeneous hydroxy-carbonate-apatite (HCA) layer forms on the surface of the scaffold for over 30- day immersion and the oriented growth of the HCA occurs. In addition, this paper discussed the competing mechanism between the dissolution and the precipitation via the measurement of calcium and silicon ionic concentrations in the SBF.


2011 ◽  
Vol 332-334 ◽  
pp. 317-320 ◽  
Author(s):  
Hui Qin Zhang

In this study, composite nanofibers of polyaniline doped with dodecylbenzene sulfonic acid (PANI-DBSA) and Poly(lactic acid) (PLA) were prepared via an electrospinning process. The surface morphology, thermal properties and crystal structure of PLA/PANI-DBSA nanofibers are characterized using Fourier transform infrared spectroscopy (FT-IR), wide-angle x-ray diffraction (WAXD) and scanning electron microscopy (SEM). SEM images showed that the morphology and diameter of the nanofibers were affected by the weight ratio of blend solution.


Author(s):  
Erdoğan Karip ◽  
Mehtap Muratoğlu

People are exposed to different kinds of diseases or various accidents in life. Hydroxyapatite (HA) has been widely employed for bone treatment applications. In this study, HA was extracted from sheep bones. Bio-composites were doped with 1, 5, and 10 wt.% of expanded perlite and 5 wt.% of ZrO2–MgO-P2O5. The bio-composites were prepared by the cold isostatic pressing method (250 MPa) and sintered at 900°C for 1 h. In order to evaluate the characteristics of the bio-composites, microhardness, density, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses were carried out on them. Additionally, the specimens whose characteristics were determined were kept in synthetic body fluid (SBF), and their in vitro behavior was examined. As a result, it was observed that microhardness increased as both the weight and the grain size of the expanded perlite were increased. Calcium silicate, tri-calcium phosphate, and hydroxyapatite were observed in the XRD analysis of all samples, and the formation of apatite structures was increased by addition of ZrO2–MgO–P2O5.


2012 ◽  
Vol 600 ◽  
pp. 174-177 ◽  
Author(s):  
Jian Fei Xia ◽  
Zong Hua Wang ◽  
Yan Zhi Xia ◽  
Fei Fei Zhang ◽  
Fu Qiang Zhu ◽  
...  

Zirconia-graphene composite (ZrO2-G) has been successfully synthesized via decomposition of ZrOCl2•6H2O in a water-isopropanol system with dispersed graphene oxide (GO) utilizing Na2S as a precursor could enable the occurrence of the deposition of Zr4+ and the deoxygenation of GO at the same time. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques were used to characterize the samples. It was found that graphene were fully coated with ZrO2, and the ZrO2 existing in tetragonal phase, which resulted in the formation of two-dimensional composite.


2015 ◽  
Vol 1 (1) ◽  
Author(s):  
M. Araújo ◽  
M. Miola ◽  
A. Venturello ◽  
G. Baldi ◽  
J. Perez ◽  
...  

AbstractIn this work, sintered pellets of a silica-based bioactive glass were dip-coated with a biocompatible natural-derived polymer in order to investigate the influence of the organic coating on the glass bioactivity. After the sintering process optimization, uncoated and coated pellets have been characterized by means of scanning electron microscopy with energy dispersive spectroscopy (SEM, EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and pH measurements, after the immersion in a simulated body fluid (SBF). An increased apatite forming ability and a better control of the pH during soaking of the samples in SBF were observed in the presence of the biopolymer. This result opens a new insight on the simple fabrication of highly bioactive hybrid inorganic-organic materials for medical applications.


2018 ◽  
Vol 73 (12) ◽  
pp. 999-1003 ◽  
Author(s):  
Mohammad Hakimi ◽  
Homeyra Rezaei ◽  
Keyvan Moeini ◽  
Heidar Raissi ◽  
Vaclav Eigner ◽  
...  

AbstractA new cyclotriphosphazene, 2,2,4,4,6,6-hexakis (o-tolylamono)-1,3,5,2λ5,4λ5,6λ5-triazatriphosphinine (MPAP), was prepared using microwave irradiation and identified by elemental analysis, FT-IR, Raman, 31P NMR spectroscopy, and single-crystal X-ray diffraction. In the crystal, in addition to hydrogen bonds, the network is further stabilized by inter- and intramolecular π–π stacking interactions between aromatic rings.


Author(s):  
Aniek Setiya Budiatin ◽  
Samirah ◽  
Maria Apriliani Gani ◽  
Wenny Putri Nilamsari ◽  
Chrismawan Ardianto ◽  
...  

Bovine bone is a considerable source for the production of hydroxyapatite. The recent study reported a novel method to extract hydroxyapatite from bovine bone without producing hazardous residue. The bovine bones were cut and boiled in the opened chamber followed by boiling in pressurized tank. The bones were then soaked into 95% ethanol. Calcination was then conducted in 800°C, 900°C and 1,000°C, for 2 hours. The result was then grinded and sieved. The powder then was characterized using Fourier transform infrared (FT-IR), Scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) to measure the purity of hydroxyapatite. It is concluded that the hydroxyapatite derived from this process showed 100% purity, resulting 35.34 ± 0.39% w/w from the wet bone weight and 72.3% w/w from the dried weight. The present extraction method has been proven to yield high amount of pure hydroxyapatite as well as reducing the use of hazardous reagent.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1498 ◽  
Author(s):  
Abdul Hafeez ◽  
Zareen Akhter ◽  
John F. Gallagher ◽  
Nawazish Ali Khan ◽  
Asghari Gul ◽  
...  

Bis-aldehyde monomers 4-(4′-formyl-phenoxy)benzaldehyde (3a), 3-methoxy-4-(4′-formyl-phenoxy)benzaldehyde (3b), and 3-ethoxy-4-(4′-formyl-phenoxy)benzaldehyde (3c) were synthesized by etherification of 4-fluorobenzaldehyde (1) with 4-hydroxybenzaldehyde (2a), 3-methoxy-4-hydroxybenzaldehyde (2b), and 3-ethoxy-4-hydroxybenzaldehyde (2c), respectively. Each monomer was polymerized with p-phenylenediamine and 4,4′-diaminodiphenyl ether to yield six poly(azomethine)s. Single crystal X-ray diffraction structures of 3b and 3c were determined. The structural characterization of the monomers and poly(azomethine)s was performed by FT-IR and NMR spectroscopic techniques and elemental analysis. Physicochemical properties of polymers were investigated by powder X-ray diffraction, thermogravimetric analysis (TGA), viscometry, UV–vis, spectroscopy and photoluminescence. These polymers were subjected to electrical conductivity measurements by the four-probe method, and their conductivities were found to be in the range 4.0 × 10−5 to 6.4 × 10−5 Scm−1, which was significantly higher than the values reported so far.


2012 ◽  
Vol 538-541 ◽  
pp. 166-171
Author(s):  
Wen Feng Ding ◽  
Yang Min Liang ◽  
Jian He ◽  
Li Tang ◽  
Jie Yu ◽  
...  

Cubic boron nitride (CBN) abrasive grains with surface titanium-deposited film were heat-treated during 550-950°C for 60 min under high vacuum circumstance. Detailed interfacial compounds analysis by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion spectrometer (EDS), differential thermal analysis (DTA) indicates that the interfacial reactions are much dependent on the heating temperature to some extents, and the reaction products, TiN, TiB2 and TiB chiefly form the network structure. In particular, at 950°C the transition layers with excellent performance, CBN/TiB2/TiB/(TiB+TiN)/TiN/CBN, is realized.


2015 ◽  
Vol 34 (4) ◽  
Author(s):  
Esma Ahlatcioǧlu ◽  
Bahire Filiz şenkal ◽  
Mustafa Okutan

AbstractIn this work, synthesis and characterization of composite materials based on NanoClay(NC) and boric acid doped PolyAniline (PANI) is studied. PANI was successfully incorporated into NC to form PANI-NC composites. The resulting organic-inorganic hybrid material, PANI-NC was characterized by various physicochemical techniques. Formation of PANI inside the clay tactoid has been confirmed by X-ray diffraction studies (XRD), scanning electron microscope (SEM) and FT-IR. Also, conductivity and physical properties of the PANI-NC composites were investigated.


Sign in / Sign up

Export Citation Format

Share Document