Hydrodynamic Analysis of Circular Translational Polishing under Mixed Lubrication

2007 ◽  
Vol 359-360 ◽  
pp. 264-268 ◽  
Author(s):  
Wen Jie Zhai ◽  
Chang Xiong Liu ◽  
Pei Lian Feng

The average Reynolds equation and average clearance equation of circular translational polishing (CTP) under the quasi-stable mixed lubrication state are set up in polar coordinates. The distributions of fluid pressure and contact pressure during polishing are numerically analyzed by solving simultaneously these equations along with the contact pressure equation. The effects of various process parameters on hydrodynamic performance of CTP are analyzed. By comparing the distributions of periodic average pressure along radial direction under fully and partially lubricated states, we conclude that carefully controlled CTP under mixed lubrication is beneficial to improving the surface quality and planarity of the wafer.

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Gang Xu ◽  
Tian-Rui Mei ◽  
Ming-Liang Hu ◽  
Zhen Chen ◽  
Jun-Ming Hu

In recent years, the development and construction of islands and reefs has been proposed by the government and commercial company. However, as a large cargo carrier cannot reach islands and reefs if the harbor is not available, such type of carrier which has well deck is designed to meet the requirements of delivering people and equipment. It is a possible way to connect the island and supply cargo ships. This paper firstly summarizes the domestic and foreign research progress of hydrodynamic analysis of ships with well deck. Then, based on the CFD (Computational Fluid Dynamics) tools, we set up a linear numerical wave tank and study the hydrodynamic performance of original Wigley-III ship and modified Wigley-III ship with well deck. The hydrodynamic effect of the floating body in the well deck has been investigated and discussed.


2003 ◽  
Vol 767 ◽  
Author(s):  
C. Fred Higgs ◽  
Sum Huan Ng ◽  
Inho Yoon ◽  
Lei Shan ◽  
Lipkong Yap ◽  
...  

Chemical mechanical polishing (CMP) is a manufacturing process used to remove or planarize metallic, dielectric, or barrier layers on silicon wafers. During polishing, a wafer is pressed against an elastic pad that is flooded with slurry. Prior work has shown that an asymmetrical, subambient pressure develops at the interface between the silicon and the pad during polishing. Since the slurry pressure is on the order of the wafer-on-pad contact stress, the total contact pressure is asymmetrical. This promotes a non-uniform polishing rate, since Preston's equation states that the material removal rate is proportional to the total contact pressure. In order to determine the total contact pressure, experiments were conducted to measure the two-dimensional fluid pressure. A superposition method was then employed to calculate the slurry film thickness by performing an equilibrium analysis of the forces and moments created by the fluid and solid interactions. The film thickness obtained by this method is used to model the slurry pressure using the polar Reynolds' equation. Modeling results qualitatively agree with experiments.


Author(s):  
Wang Wei ◽  
Wenjian Xiao ◽  
Xiaoping Ouyang ◽  
Shengrong Guo ◽  
Huayong Yang

Abstract Reciprocating seals are vital components in hydraulic systems. As a kind of reciprocating seal, the glyd-ring is commonly used as a piston seal. For the sealing characteristics of aircraft glyd-ring under severe working conditions, systematic research and experimental verification are not sufficient. The liquid-solid coupling model based on mixed lubrication theory is established in order to analyze the characteristics of the glyd-ring seal in the cylinder piston. The contact stress distribution on the glyd-ring under different fluid pressures or temperatures is discussed through finite element analysis. The mechanical analysis of solids and fluids are carried out separately, and the thickness of the fluid film is continuously updated until the results of the deformation analysis converged. According to the calculation results obtained by this model, three characteristics of the glyd-ring seal (static contact pressure, film thickness, friction force) are discussed. As the fluid pressure rises, the contact pressure in the sealing area increases by a rate which is greater than that of the corresponding fluid pressure, the seal length is shortened, the fluid film thickness is reduced, and the frictional force gradually increases, this force increase is proved by test data. As the temperature rises, the contact pressure in the seal area (near the O-ring) increases by a rate which is greater than that of the corresponding fluid pressure, the seal length increases, the oil film thickness decreases, and the frictional force increases significantly.


Author(s):  
Biswajit Roy ◽  
Sudip Dey

The precise prediction of a rotor against instability is needed for avoiding the degradation or failure of the system’s performance due to the parametric variabilities of a bearing system. In general, the design of the journal bearing is framed based on the deterministic theoretical analysis. To map the precise prediction of hydrodynamic performance, it is needed to include the uncertain effect of input parameters on the output behavior of the journal bearing. This paper presents the uncertain hydrodynamic analysis of a two-axial-groove journal bearing including randomness in bearing oil viscosity and supply pressure. To simulate the uncertainty in the input parameters, the Monte Carlo simulation is carried out. A support vector machine is employed as a metamodel to increase the computational efficiency. Both individual and compound effects of uncertainties in the input parameters are studied to quantify their effect on the steady-state and dynamic characteristics of the bearing.


1994 ◽  
Vol 116 (3) ◽  
pp. 514-520 ◽  
Author(s):  
R. Y. Wu ◽  
G. G. Adams

The behavior of a flexible disk, spinning in close proximity to a warped/skewed stationary baseplate, is investigated. The governing partial differential equation for the disk deflection is coupled to the Reynolds equation of the air film. Four warped/ skewed baseplate configurations are modeled. The effects of baseplate warpage and skew on the steady-state configuration of the disk are determined by investigating small deviations away from the axisymmetric configuration of the disk corresponding to a perfect baseplate. Exponential Fourier series expansions in the circumferential direction, along with finite differences in the radial direction, are used. Numerical results are determined and compared for various values of the angular velocity and initial thicknesses of the air film. Among the three warpages considered, the saddle warped baseplate provides the largest change in disk deflection whereas the spherically warped baseplate gives the smallest change. The total response of the disk is obtained by superposition of the deflection change caused by the warped/skewed baseplate and the deflection obtained from the axisymmetric solution.


2009 ◽  
Vol 3 (1) ◽  
Author(s):  
Qiang Wang ◽  
Fernando Jaramillo ◽  
Yasushi Kato ◽  
Leonard Pinchuk ◽  
Richard T. Schoephoerster

Implantation methods for commercially available heart valve prostheses require open-chest access to the heart to perform the suturing process. In order to alleviate this complicated surgical implant technique, a “stent-valve” design was developed that will provide a less cumbersome implantation method and therefore a less invasive access to the heart. The purpose of this study is to verify its hydrodynamic performance and migration characteristics to assess its feasibility for use as a replacement heart valve. Hydrodynamic evaluation of the novel stent-valve combination device was carried out using a Vivitro left heart simulator and by setting up a comparison with the same 19 mm trileaflet valve under a traditional implantation (suture) method. To assess implantation ability under normal physiological conditions, porcine aortic root tissue was mounted into the left heart simulator to replace the original glass sinus. A comparison experiment was conducted to study the change in the total compliance and resistance of the testing system using the modified Windkessel model. For the range of test conditions investigated, the stent-valve combination device produced an average pressure gradient of 41.2 mm Hg(±19.6 mm Hg), an average effective orifice area (EOA) of 1.06 cm2(±0.08 cm2), and an average regurgitation percentage of 4.5% (±3.3%), while the sutured valve produced an average pressure gradient of 48.7 mm Hg(±17.4 mm Hg), an average EOA of 0.88 cm2(±0.14 cm2), and an average regurgitation percentage of 0.8% (±0.4%). The total compliance and resistance of the system was 0.37 ml/mm Hg(±0.01 ml/mm Hg) and 1.1 mm Hg/ml/s(±0.29 mm Hg/ml/s), with the original Windkessel model, and 0.33 ml/mm Hg(±0.01 ml/mm Hg) and 1.1 mm Hg/ml/s(±0.24 mm Hg/ml/s) for the system with the aortic tissue. The stent-valve combination device has demonstrated favorable hydrodynamic performance when compared with the same trileaflet valve under the traditional suturing method, and the arterial stent makes it possible to secure the valve at its required position without migration.


2019 ◽  
Vol 71 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Shixian Xu ◽  
Zhengtao Su ◽  
Jian Wu

Purpose This paper aims to research the influence of pressure, friction factors, roughness and actuating speed to the mixed lubrication models of outstroke and instroke. Design/methodology/approach Mixed lubrication model is solved by finite volume method, which consists of coupled fluid mechanics, deformation mechanics and contact mechanics analyses. The influence of friction factor on the finite element model is also considered. Then, contact pressure, film thickness, friction and leakage have been studied. Findings It was found that the amount of leakage is sensitive to the film thickness. The larger the film thickness is, the greater the influence received from the friction factor, however, the effect of oil film on the friction is negligible. The friction is determined mainly by the contact pressure. The trend of friction and leakage influenced by actuating velocity and roughness is also obtained. Originality/value The influence of friction factor on the finite element model is considered. This can make the calculation more accurate.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Yuechang Wang ◽  
Abdel Dorgham ◽  
Ying Liu ◽  
Chun Wang ◽  
Mark C. T. Wilson ◽  
...  

Abstract The ability to simulate mixed lubrication problems has greatly improved, especially in concentrated lubricated contacts. A mixed lubrication simulation method was developed by utilizing the semi-system approach which has been proven to be highly useful for improving stability and robustness of mixed lubrication simulations. Then different variants of the model were developed by varying the discretization schemes used to treat the Couette flow terms in the Reynolds equation, varying the evaluation of density derivatives and varying the contribution of terms in the coefficient matrix. The resulting pressure distribution, film thickness distribution, lambda ratio, contact ratio, and the computation time were compared and found to be strongly influenced by the choice of solution scheme. This indicates that the output from mixed lubrication solvers can be readily used for qualitative and parametric studies, but care should be taken when making quantitative predictions.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xiaohu Li

Tuna can change the area and shape of the median fins, including the first dorsal, second dorsal, and anal fins. The morphing median fins have the ability of adjusting the hydrodynamic forces, thereby affecting the yaw mobility of tuna to a certain extent. In this paper, the hydrodynamic analysis of the median fins under different morphing states is carried out by the numerical method, so as to clarify the influence of the erected median fins on the yaw maneuvers. By comparing the two morphing states of erected and depressed, it can be concluded that the erected median fins can increase their own hydrodynamic forces during the yaw movement. However, the second dorsal and anal fins have limited influence on the yaw maneuverability, and they tend to maintain the stability of tuna. The first dorsal fin has more lift increment in the erection state, which can obviously affect the hydrodynamic performance of tuna. Moreover, as the median fins are erected, the hydrodynamic forces of the tuna’s body increase synchronously due to the interaction between the body and the median fins, which is also very beneficial to the yaw motion. This study indicates that tuna can use the morphing median fins to adjust its mobility and stability, which provides a new idea for the design of robotic fish.


2004 ◽  
Vol 126 (1) ◽  
pp. 156-161 ◽  
Author(s):  
Richard F. Salant ◽  
Ann H. Rocke

The flow field in the lubricating film of a rotary lip seal is analyzed numerically by solving the Reynolds equation with flow factors. The behavior of such a flow field is dominated by the asperities on the lip surface. Since previous analyses treated those asperities deterministically, they required very large computation times. The present approach is much less computationally intensive because the asperities are treated statistically. Since cavitation and asperity orientation play important roles, these are taken into account in the computation of the flow factors. Results of the analysis show how the operating parameters of the seal and the characteristics of the asperities affect such seal characteristics as the pressure distribution in the film, the pumping rate and the load support.


Sign in / Sign up

Export Citation Format

Share Document