Preparation and Characterization of CaCu3Ti4O12 Ceramics by Cold Isostatic Press Forming

2008 ◽  
Vol 368-372 ◽  
pp. 123-125
Author(s):  
Jie Li ◽  
Hao Xue ◽  
Zhao Xian Xiong

CaCu3Ti4O12 (CCTO) ceramics were prepared by cold isostatic press (CIP) forming combined with the conventional sintering method. The effects of calcining temperature on properties of CCTO ceramics were investigated. The dielectric properties as the function of temperature at typical frequencies were measured in the temperature range from 243 to 363 K. In addition, the dielectric properties and complex impedances at room temperature were analyzed in a frequency range from 20 Hz to 106 Hz. The results showed that CCTO ceramics with dielectric constant higher than 104 were obtained. Compared with the dry press forming, CCTO ceramics prepared by CIP had more homogeneous grains, less porosity and better dielectric properties.

Clay Minerals ◽  
2014 ◽  
Vol 49 (4) ◽  
pp. 551-558
Author(s):  
S. Gümüştas ◽  
K. Köseoğlu ◽  
E. E. Yalçinkaya ◽  
M. Balcan

AbstractThe purpose of this paper is to determine the effect of NaF and firing temperature on the dielectric properties (dielectric constant and dielectric loss) of talc, which is used in the electrical and electronic industries as a circuit element. A detailed characterization of the samples was made by XRD, FTIR, SEM and TG-DTG methods. Dielectric measurements were performed in the frequency range from 1 MHz to 80 MHz at room temperature. The dielectric constant value increased with an increase in firing temperature due to the removal of polarizable compounds from the talc structure. The higher dielectric constant values were obtained by addition of NaF. The dielectric loss of NaF doped talc decreased with the increase of firing temperature and increased with the increase of the amount of NaF.


2011 ◽  
Vol 485 ◽  
pp. 39-42 ◽  
Author(s):  
Kenta Yamashita ◽  
Shigehito Shimizu ◽  
Ichiro Fujii ◽  
Kouichi Nakashima ◽  
Nobuhiro Kumada ◽  
...  

ANbO3– BaTiO3(A=K, Na, or K0.5Na0.5) system ceramics were prepared using a conventional sintering method, and their dielectric properties were investigated. It was found that the dielectric constant of KNbO3-BaTiO3and (K0.5Na0.5) NbO3- BaTiO3system ceramics did not strongly depend on temperature between 20 and 400 °C, making them useful for capacitor application.


2011 ◽  
Vol 2011 (1) ◽  
pp. 000740-000746 ◽  
Author(s):  
Bradley Thrasher ◽  
Deepukumar Nair ◽  
James Parisi ◽  
Glenn Oliver ◽  
Michael A. Smith

Low Temperature Co-fired Ceramic (LTCC) material systems offer a highly versatile microwave and millimeter wave packaging platform. Extremely low microwave loss, excellent control of dielectric constant, uniform dielectric thickness, non-existent water absorption leading to very high hermeticity, ability to support multilayer structure leading to 3-dimensional packaging, ability to embed passive functions within the tape layers, availability of a wide range of metallizations, etc. are some of the key advantages of LTCC for microwave packaging. One of the important parameters which needs to be determined at the very early stages of circuit designs are the dielectric properties - dielectric constant and loss tangent, both of which are functions of frequency. These properties need to be known accurately over the entire frequency range of operation for the circuit. For LTCC based designs, the use of dielectric constant of bulk material can lead to deviations between the performance expected at the design stage and for the fabricated circuit. Such deviations are a significant concern for broadband circuits as well as for circuits with sharp resonant behavior such as filters. One of the significant sources of deviation between bulk LTCC and “in-circuit” dielectric constant is the nature of the thick film metallizations used in LTCC technology. Work described here is a comprehensive characterization of three DuPont™ GreenTape™ LTCC systems 951, 943, and 9K7 - in the frequency range 10 to 70 GHz. Both bulk and “in-circuit” dielectric properties with silver and gold metallizations are studied to quantify the deviations in dielectric properties. A Fabry-Perot open resonator technique is used for the bulk characterization while printed ring resonators are used for the in-circuit characterization. This comprehensive characterization will provide key design data for LTCC designers in the 10 – 70 GHz frequency range.


Geophysics ◽  
1973 ◽  
Vol 38 (1) ◽  
pp. 135-139 ◽  
Author(s):  
W. Hansen ◽  
W. R. Sill ◽  
S. H. Ward

Basaltic samples of known chemical composition were measured for dielectric constant and loss tangent in the frequency range 100 hz to 50 Mhz. All samples were prepared and measured by a contact substitution method in a dry nitrogen atmosphere at room temperature. The measurements indicated a general spectrum of dielectric constant with a range of 10–65 at 100 hz to 7–15 at 50 Mhz with frequency dispersion observed to be minimal above 1 Mhz. The loss tangent decreases from a range .2–.9 at 100 hz to a range .02–.15 at 100 khz. A finer‐grained sample was observed to have higher dielectric properties below 1 Mhz than a coarser‐grained sample of identical composition. A qualitative and subsequent quantitative study of possible compositional effects indicated that iron‐titanium compounds may be responsible for observed variations in the dielectric spectra of typical basalts.


2008 ◽  
Vol 403 ◽  
pp. 125-128 ◽  
Author(s):  
Do Kyung Kim ◽  
Ha Neul Kim ◽  
Young Hoon Seong ◽  
Seung Soo Baek ◽  
Eul Son Kang ◽  
...  

The dielectric properties of -SiAlON and various cations doped -SiAlON bulk ceramics prepared by a hot-press method were investigated. The dielectric properties (dielectric constant and tangent loss) were characterized by a post-resonator method (Hakki-Coleman method) at room temperature in the microwave frequency range. The effect of z-values about -SiAlON was examined, and also the effects of various interstitial cations on dielectric properties of -SiAlON were studied. Dielectric properties of -SiAlON were compared with those of Si3N4 and -SiAlON and their relationship between the dielectric properties and the cationic species of SiAlON were discussed.


Inorganics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 8 ◽  
Author(s):  
Anastasia Kholodkova ◽  
Aleksey Smirnov ◽  
Marina Danchevskaya ◽  
Yurii Ivakin ◽  
Galina Muravieva ◽  
...  

Bi2O3 was investigated in the role of a modifier for BaTiO3 powder synthesized in a water vapor atmosphere at 200 °C and 1.55 MPa. Modification was aimed at increasing the sinterability of the powder as well as improving the structural and dielectric properties of the obtained ceramics. The morphology and phase contents of the synthesized BaTiO3 powder were controlled by the methods of SEM and XRD. Properties of pure and Bi-doped BaTiO3 ceramics were comprehensively studied by XRD, SEM, dielectric spectroscopy, and standard approaches for density and mechanical strength determination. Doping with Bi2O3 favored BaTiO3 ceramic densification and strengthening. The room-temperature dielectric constant and the loss tangent of Bi-doped BaTiO3 were shown to stabilize within the frequency range of 20 Hz to 2 MHz compared to non-doped material. The drop of dielectric constant between room temperature and Curie point was significantly reduced after Bi2O3 addition to BaTiO3. Bi2O3 appeared to be an effective modifier for BaTiO3 ceramics produced from non-stoichiometric powder synthesized in water vapor.


2014 ◽  
Vol 1035 ◽  
pp. 422-425
Author(s):  
Jian Yong Guo ◽  
Tao Sheng Zhou ◽  
Ji Hong Liao

The Bi0.5(Na1-xKx)0.5-yBaTiO3(BNK-BT) lead-free ceramics have been prepared by the solild reactive sintering method. XRD patterns show the BNK-BT ceramics had a perovskite structure. Piezoelectric and dielectric properties of the ceramics also have been studied. The results show that the samples had the best piezoelectric and dielectric properties when x=0.20, y=0.10. And the maximum of d33is 149 pC/N, while the relative dielectric constant is 1087.


2016 ◽  
Vol 34 (1) ◽  
pp. 164-168
Author(s):  
Raz Muhammad ◽  
Muhammad Uzair ◽  
M. Javid Iqbal ◽  
M. Jawad Khan ◽  
Yaseen Iqbal ◽  
...  

AbstractCa2Nd4Ti6O20, a layered perov skite structured material was synthesized via a chemical (citrate sol-gel) route for the first time using nitrates and alkoxide precursors. Phase analysis of a sample sintered at 1625 °C revealed the formation of an orthorhombic (Pbn21) symmetry. The microstructure of the sample after sintering comprised rod-shaped grains of a size of 1.5 to 6.5µm. The room temperature dielectric constant of the sintered sample was 38 at 100 kHz. The remnant polarization (Pr) and the coercive field (Ec) were about 400 μC/cm2 and 8.4 kV/cm, respectively. Impedance spectroscopy revealed that the capacitance (13.7 pF) and activation energy (1.39 eV) of the grain boundary was greater than the capacitance (5.7 pF) and activation energy (1.13 eV) of the grain.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Soumya Sundar Pattanayak ◽  
Soumen Biswas

Abstract The quality of agricultural products can be remotely sensed and enhanced by determining the dielectric properties. This paper studies the dielectric properties of banana leaf and banana peel over the frequency range 1–20 GHz using the open-ended coaxial probe (OCP) method. A new curve fitting model is proposed to characterize the dielectric properties of banana leaf and banana peel. The different moisture content (MC) levels are considered for both banana leaf and banana peel samples and, their dielectric properties are characterized. Further, the banana leaf and banana peel’s measurement data are compared with the data obtained using the proposed model. In addition, Root Mean Square Error (RMSE) and R-squared (R 2) are calculated to validate the performance of the proposed model. In case of banana leaf at 68.26% MC, the dielectric constant achieves the value of R 2 and RMSE of 0.98 and 0.0648, respectively. Similarly, dielectric loss achieves the value of R 2 and RMSE of 0.88 and 0.0795, respectively. Further, for banana peel at 80.89% MC, the dielectric constant achieves the value of R 2 and RMSE of 0.99 and 0.2989, respectively. Similarly, dielectric loss achieves the value of R 2 and RMSE of 0.96 and 0.6132, respectively.


2014 ◽  
Vol 974 ◽  
pp. 157-161
Author(s):  
Masturah Mohamed ◽  
Mahesh Talari ◽  
Mohd Salleh Mohd Deni ◽  
Azlan Zakaria

CaCu3Ti4O12(CCTO) is well known to have colossal dielectric constant in the range of 105.It is widely accepted that this phenomenon may be attributed to internal layer barrier capacitance (IBLC) model. The dielectric properties of CCTO were reported to be strongly dependent on the processing conditions and grain size. In this work, CCTO samples with different grain sizes were produced by varying sintering temperature in order to investigate IBLC effect on dielectric properties of CCTO. The samples were sintered at four different temperatures, (T=1100°C, 1050°C, 1000°C and 950°C). Dielectric measurements were carried out for the samples in the frequency range of 102– 106Hz using impedance spectrometer. Electron micrographs showed that increasing temperature promoted the grain growth of CCTO while sintering. The internal crystalline defects are seen to play major role by increasing the grain conductivity in dipole formation and increased the dielectric constant of the samples.


Sign in / Sign up

Export Citation Format

Share Document