Efficient Super-Smooth Finishing Characteristics of SiC Materials through the Use of Fine-Grinding

2009 ◽  
Vol 404 ◽  
pp. 137-141 ◽  
Author(s):  
H. Kasuga ◽  
Hitoshi Ohmori ◽  
Wei Min Lin ◽  
Y. Watanabe ◽  
T. Mishima ◽  
...  

Silicon carbide (SiC) materials have increasingly been needed in the wide range of industries, such as for structural components, automobile parts, space telescope, X-ray mirror, and next-generation semiconductors. However, SiC materials have difficulties in super-smooth finishing because of their hard and brittle characteristics. The authors have been investigating appropriate conditions on their finishing by fine-grinding with the unique grinding process called ELID (Electrolytic In-process Dressing) grinding method. The ELID grinding method has a stable grinding ability, so very detailed characteristics of their material-remove mechanisms were to be investigated. Surface analysis of each material has been discussed through the ELID, and this study proposes good finishing conditions for SiC. In this paper, the advantages of the applied fine-grinding are shown, and unique features on grinding characteristics of SiC through various grinding experimental parameters are described.

2016 ◽  
Vol 697 ◽  
pp. 841-845 ◽  
Author(s):  
Jia Xing Chang ◽  
Rong Zheng Liu ◽  
Ma Lin Liu ◽  
You Lin Shao ◽  
Bing Liu

Silicon carbide nanowires have been extensively studied because of their unique physical and chemical properties. They can be applied in high temperature, high frequency, high power, and corrosive environments, and have a wide range of applications in electronics, chemical industry, energy and other fields. In this paper, SiC nanowires with high output were synthesized by chemical vapor deposition method using methyltrichlorosilane as raw material. The influences of the catalyst and temperature were studied. SiC nanochains were also obtained by adding Al2O3 powder under appropriate temperature controlled strategy. These two kinds of one-dimensional SiC nanomaterials were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometer (EDS) and transmission electron microscope (TEM) methods.


2001 ◽  
Vol III.01.1 (0) ◽  
pp. 277-278
Author(s):  
Weimin LIN ◽  
Hitoshi OHMORI ◽  
Yutaka YAMAGATA ◽  
Sei MORIYASU ◽  
Yoshiyuki UENO ◽  
...  
Keyword(s):  
X Ray ◽  

2020 ◽  
Vol 27 (3) ◽  
pp. 852-859 ◽  
Author(s):  
Leon M. Lohse ◽  
Anna-Lena Robisch ◽  
Mareike Töpperwien ◽  
Simon Maretzke ◽  
Martin Krenkel ◽  
...  

Propagation-based phase-contrast X-ray imaging is by now a well established imaging technique, which – as a full-field technique – is particularly useful for tomography applications. Since it can be implemented with synchrotron radiation and at laboratory micro-focus sources, it covers a wide range of applications. A limiting factor in its development has been the phase-retrieval step, which was often performed using methods with a limited regime of applicability, typically based on linearization. In this work, a much larger set of algorithms, which covers a wide range of cases (experimental parameters, objects and constraints), is compiled into a single toolbox – the HoloTomoToolbox – which is made publicly available. Importantly, the unified structure of the implemented phase-retrieval functions facilitates their use and performance test on different experimental data.


2007 ◽  
Vol 1056 ◽  
Author(s):  
Charles Olk ◽  
Daad B. Haddad

ABSTRACTCombinatorial gradient-controlled sputter deposition has been employed to produce a library of 100 separate thin films with a wide range of Mg-Al alloy compositions. We have successfully isolated the â (Mg17Al12) phase in polycrystalline films for investigation. The presence of the â phase has been found to be desirable for increasing corrosion resistance; however, in structural components under tensile loading and/or at elevated temperatures, the â phase precipitates undergo coarsening which induces poor creep behavior in several common alloys. We have also synthesized amorphous Mg-Al and mixed-phase compositions as identified by X-ray diffraction measurements. Details of the growth procedure as well as structural and compositional characterization are presented.


2007 ◽  
Vol 339 ◽  
pp. 483-489 ◽  
Author(s):  
Kazutoshi Katahira ◽  
Hitoshi Ohmori

The present paper describes the highly efficient and precise ELID grinding method and presents a discussion on the ELID grinding process and the grinding characteristics of several kinds of ceramic materials. The following conclusions are obtained; (1) Good ground surface roughness and accuracy are achieved using the #4000 metal-bonded grinding wheel in through-feed centerless grinding for ZrO2 optical fiber ferrules. (2) Efficient and precise grinding of spherical lens molds with cup wheels using the ELID CG-grinding process was proposed and tested in the present study. (3) The ELID grinding method can be used to fabricate machined surfaces exhibiting desirable characteristics for hard AlN ceramics. The ELID ground AlN demonstrated a surface hardness and sliding characteristics that were superior to those of the polished series. These advantages may be attributable to the diffusion phenomenon of the oxygen element produced by the ELID grinding.


Author(s):  
A. J. Tousimis

The elemental composition of amino acids is similar to that of the major structural components of the epithelial cells of the small intestine and other tissues. Therefore, their subcellular localization and concentration measurements are not possible by x-ray microanalysis. Radioactive isotope labeling: I131-tyrosine, Se75-methionine and S35-methionine have been successfully employed in numerous absorption and transport studies. The latter two have been utilized both in vitro and vivo, with similar results in the hamster and human small intestine. Non-radioactive Selenomethionine, since its absorption/transport behavior is assumed to be the same as that of Se75- methionine and S75-methionine could serve as a compound tracer for this amino acid.


2020 ◽  
Vol 86 (7) ◽  
pp. 39-44
Author(s):  
K. V. Gogolinsky ◽  
A. E. Ivkin ◽  
V. V. Alekhnovich ◽  
A. Yu. Vasiliev ◽  
A. E. Tyurnina ◽  
...  

Thickness is one of the key indicators characterizing the quality and functional properties of coatings. Various indirect methods (electromagnetic, radiation, optical) most often used in practice to measure thickness are based on the functional dependence of a particular physical parameter of the system «base – coating» on the coating thickness. The sensitivity of these procedures to the certain properties of coatings imposes the main restriction to the accuracy of measurements. Therefore, the development and implementation of the approaches based on direct measurements of geometric parameters of the coating appears expedient. These methods often belong to the class of «destructive» and, in addition to measuring instruments, require the use of special equipment. To ensure the uniformity of measurements in the laboratory or technological control, these methods are isolated as a separate procedure (method) and must undergo metrological certification in accordance with GOST R 8.563–2009. We present implementation, metrological certification and practical application of the method for measuring thickness of coatings by crater-grinding method. The principles of technical implementation of test equipment, measurement procedure and calculation formulas are described. The results of evaluating the accuracy indicators of the proposed procedure by calculation and experimental methods are presented. In both cases, the relative error did not exceed 6%. The applicability of the developed technique is shown for a wide range of coating materials (from soft metals to superhard ceramics) of different thickness (with from units to hundreds of micrometers). Apart from the goals of process control and outgoing inspection, the method can be recommended as a reference measurement procedure for calibration of measures and adjusting samples for various types of thickness gauges.


Author(s):  
Katherine V. Whittington

Abstract The electronics supply chain is being increasingly infiltrated by non-authentic, counterfeit electronic parts, whose use poses a great risk to the integrity and quality of critical hardware. There is a wide range of counterfeit parts such as leads and body molds. The failure analyst has many tools that can be used to investigate counterfeit parts. The key is to follow an investigative path that makes sense for each scenario. External visual inspection is called for whenever the source of supply is questionable. Other methods include use of solvents, 3D measurement, X-ray fluorescence, C-mode scanning acoustic microscopy, thermal cycle testing, burn-in technique, and electrical testing. Awareness, vigilance, and effective investigations are the best defense against the threat of counterfeit parts.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 526d-526
Author(s):  
M. Freeman ◽  
C. Walters ◽  
M.A. Thorpe ◽  
T. Gradziel

Almond, as with other stone fruit, possesses a highly lignified endocarp or shell. The dominant hard-shelled trait (D-) is positively associated with greater resistant to insect infestation than nuts expressing the paper-shelled (dd) trait. Hard-shelled genotypes have undesirable effects, including a lower kernel meat-to-nut crack-out ratio, greater kernel damage during mechanical shelling, and a reduction in plant energy available to kernel development. Histogenic analysis shows that the almond endocarp, unlike peach, has a tri-partite structure. Insect feeding studies have subsequently demonstrated that the inner endocarp layer, which is similar in both hard and paper-shelled types, is the most important structural barrier to insect infestation. Shell-seal integrity and X-ray studies have confirmed that discontinuities at the inner endocarp suture seal are the primary, though not the sole site of entry for insect pests. Paper-shelled almond selections with highly lignified and well-sealed inner endocarps show resistance levels comparable to hard shelled types but with crack-out ratios 30% to 40% higher. Pseudo-paper-shelled types have also been selected, in which a highly lignified outer endocarp is formed, but is retained by the fruit hull at dehiscence. An understanding of endocarp morphology and development is thus important in breeding for insect resistance as well as the commercial utilization of both kernel and hull.


Sign in / Sign up

Export Citation Format

Share Document