scholarly journals Grinding of Arc-Sprayed Tungsten Carbide Coatings on Machining Centers - Process Configuration and Simulation

2010 ◽  
Vol 438 ◽  
pp. 115-122 ◽  
Author(s):  
Dirk Biermann ◽  
T. Mohn ◽  
H. Blum ◽  
H. Kleemann

This paper describes the special demands placed on the grinding of arc-sprayed WC-Fe coatings on a conventional machining center. Basic process configuration, experimental results, measurement methods and an approach for a hybrid simulation system are presented.

Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 333
Author(s):  
Jian Le ◽  
Hao Zhang ◽  
Cao Wang ◽  
Xingrui Li ◽  
Jiangfeng Zhu

To enhance the stability and accuracy of the digital-physical hybrid simulation system of a modular multilevel converter-based high voltage direct current (MMC-HVDC) system, this paper presents an improved power interface modeling algorithm based on ideal transformer method (ITM). By analyzing the stability condition of a hybrid simulation system based on the ITM model, the current of a so-called virtual resistance is added to the control signal of the controlled current source in the digital subsystem, and the stability of the hybrid simulation system with the improved power interface model is analyzed. The value of the virtual resistance is optimized by comprehensively considering system stability and simulation precision. A two-terminal bipolar MMC-HVDC simulation system based on the proposed power interface model is established. The comparisons of the simulation results verify that the proposed method can effectively improve the stability of the hybrid simulation system, and at the same time has the advantages of high simulation accuracy and easy implementation.


2018 ◽  
Vol 185 ◽  
pp. 00018
Author(s):  
Albert Wen-Jeng Hsue ◽  
Yi-Zhong Zheng

Tungsten carbide is a typical difficult-to-cut material by conventional machining processes. In this paper, a novel design of flexible abrasives tool combined with a rotary ultrasonic machining (RUM) spindle is conducted to reduce the labor force significantly. The newly designed flexibility of tool-tip is aimed at preventing overcutting from the CNC grinding. The grinding conditions with resulted surface morphology of the tungsten steel were investigated through Taguchi design of experiment and ANOVA analysis. The machining capability of the novel flexible tool is compared with conventional tools through specific grinding paths under proper operational conditions.


2012 ◽  
Vol 10 (2) ◽  
pp. 155-167 ◽  
Author(s):  
Momir Prascevic ◽  
Dragan Cvetkovic ◽  
Darko Mihajlov

It is important to know the sound insulation of partitions in order to be able to compare different constructions, calculate acoustic comfort in apartments or noise levels from outdoor sources such as road traffic, and find engineer optimum solutions to noise problems. The use of lightweight partitions as party walls between dwellings has become common because sound insulation requirements can be achieved with low overall surface weights. However, they need greater skill to design and construct, because the overall design is much more complex. It is also more difficult to predict and measure of sound transmission loss of lightweight partitions. There are various methods for predicting and measuring sound insulation of partitions and some of them will be described in this paper. Also, this paper presents a comparison of experimental results of the sound insulation of lightweight partitions with results obtained using different theoretical models for single homogenous panels and double panels with and without acoustic absorption in the cavity between the panels.


2017 ◽  
Vol 20 (11) ◽  
pp. 1658-1670 ◽  
Author(s):  
Shizhu Tian ◽  
Hongxing Jia ◽  
Yuanzheng Lin

The behaviour of bridge columns strengthened using carbon fibre–reinforced polymer composites has been studied extensively. However, few investigations have been conducted regarding the influence of carbon fibre–reinforced polymer-strengthened columns on the seismic behaviour of reinforced concrete continuous girder bridges. This article details the hybrid simulations of a continuous reinforced concrete girder bridge whose columns are strengthened by carbon fibre–reinforced polymer jackets. In the hybrid simulations, one ductile column is selected as the experimental element, which is represented by a 1/2.5-scale specimen, and the remaining bridge parts are simultaneously modelled in OpenSees (the Open System for Earthquake Engineering Simulation). After combining the experimental element and the numerical substructure, the hybrid analysis model is developed with the established hybrid simulation system. The displacements of the bridge and the lateral force–displacement response of the experimental element in hybrid simulation are obtained. Compared with the results of numerical simulation, the stability and accuracy of the established hybrid simulation system are demonstrated. Meanwhile, the comparative hybrid simulation results of the as-built bridge and the carbon fibre–reinforced polymer-strengthened bridge also prove the effectiveness of the carbon fibre–reinforced polymer jackets’ confinement in the continuous reinforced concrete girder bridge.


2010 ◽  
Vol 3 (2) ◽  
pp. 47-60
Author(s):  
Alexey V. Starov

In this paper, analysis of existing methods application of criterial description of ignition conditions and combustion break-out for summarizing of experimental results is carried out. Experimental results are obtained at investigations of hydrogen combustion in combustor with high supersonic speed of airflow. For these conditions selection of several criterions was substantiated and they have a good agreement with new experimental results. At the same time complexity of determination of experimental physical parameters, which are included in criterions, do not allow confidently to apply them for prediction of steady-state combustion limits. Therefore further accumulation of experimental data and development of measurement methods are necessary for accurate criterions obtaining.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Thanh Huy Phung ◽  
Kye-Si Kwon

AbstractThe needle-type inkjet dispenser has been widely used for various research and industrial purposes. The droplet jetting from the dispenser is closely related to the needle motion, which strikes against the nozzle seat. The strike of the needle on the nozzle seat often cause additional impact due to the bounce back, which may produce multiple droplets per jetting trigger. However, the needle motion is difficult to measure, and the actual behaviors have been known little. In this study, we measured the needle motion using an accelerometer and visualized jetting images to understand jetting behavior in relation to the needle motion. Then, we investigated various parameter effects on needle motion and jetting behaviors based on our proposed measurement methods. From the experimental results, we found that needle travel distance should be in the optimal range in order to produce single droplet per jetting trigger. In conclusion, we proposed an effective parameter selection method for the optimal jetting based on understanding of the jetting physics.


Sign in / Sign up

Export Citation Format

Share Document