Study on Drilling Force of Pore for Hard-to-Cut Material

2010 ◽  
Vol 455 ◽  
pp. 521-524
Author(s):  
Yong Tang ◽  
Bang Yan Ye ◽  
X.F. Hu ◽  
Qiang Wu

This paper studies drilling force of pore for hard-cutting material based on theoretical and experimental investigation during pore drilling process. A coupled thermo-mechanical finite element model of metal pore drilling process was established. Some key techniques such as material model, chip separation and damage criteria and dynamic mesh self-adapting technology in the finite element simulation of metal cutting process were discussed in details. The paper simulated dynamically the chip formation of the twist drilling process in which rigid plastic material model was selected for workpieces and thermal rigid models for tools. The results indicate that the proposed finite element model is not only correct but also feasible in the prediction of the variations of drilling force and torque with amount of feed.

2013 ◽  
Vol 421 ◽  
pp. 76-80 ◽  
Author(s):  
Li Wen Chen ◽  
Kai Szu Luo ◽  
Jik Chang Leong ◽  
Jun Yan Zhuang ◽  
Nan Ming Yeh ◽  
...  

In this study, an elastic-plastic finite element model is used to simulate the thermal affected bone (TAZ) during bone drilling process under the condition of constant applied drilling force. Various drilling times and measurement depths are investigated to explore the size of TAZ and stress distributions within the bone. The results indicate that the maximum TAZ occurs at the interface of cortical bone and cancellous bone. The maximum diameter of TAZ is found to be 3.5 mm in this study.


2013 ◽  
Vol 589-590 ◽  
pp. 157-162
Author(s):  
Ya Hui Hu ◽  
Qing Yun Zhang ◽  
Xiao Yu Yue

The changes of drilling forces during bone drilling provide a useful index for evaluating the risk of potential damage to the bone. The aim of the work is that an elastic-plastic dynamic finite element model is used to simulate the process of a drill bit drilling through the bone. The finite element model was set up in the Abaqus6.11; the prediction model of the drilling force was gotten by using the regression orthogonal experiment and data processing software Matlab7.0. Diverse values of drilling speed, feed rate and drill diameter are important factors which will lead to changes in the drilling forces. By controlling the drilling parameters can obtain the optimal drilling force. The results show that the diameter has the greatest influence on the drilling force, the drilling speed the second, the feed rate the last.


1985 ◽  
Vol 107 (4) ◽  
pp. 349-354 ◽  
Author(s):  
J. S. Strenkowski ◽  
J. T. Carroll

A finite element model of orthogonal metal cutting is described. The paper introduces a new chip separation criterion based on the effective plastic strain in the workpiece. Several cutting parameters that are often neglected in simplified metal-cutting models are included, such as elastic-plastic material properties of both the workpiece and tool, friction along the tool rake face, and geometry of the cutting edge and workpiece. The model predicts chip geometry, residual stresses in the workpiece, and tool stresses and forces, without any reliance on empirical metal cutting data. The paper demonstrates that use of a chip separation criterion based on effective plastic strain is essential in predicting chip geometry and residual stresses with the finite element method.


2021 ◽  
Author(s):  
Sandeep Dhar

The trajectory of an angular particle as it cuts a ductile target is, in general, complicated because of its dependence not only on particle shape, but also on particle orientation at the initial instant of impact. This orientation dependence has also made experimental measurement of impact parameters of single angular particles very difficult, resulting in a relatively small amount of available experimental data in the literature. The current work is focused on obtaining measurements of particle kinematics for comparison to rigid plastic model developed by Papini and Spelt. Fundamental mechanisms of material removal are identified, and measurements of rebound parameters and corresponding crater dimensions of single hardened steel particles launched against flat aluminium alloy targets are presented. Also a 2-D finite element model is developed and a dynamic analysis is performed to predict the erosion mechanism. Overall, a good agreement was found among the experimental results, rigid-plastic model predictions and finite element model predictions.


2019 ◽  
Vol 56 (4) ◽  
pp. 411-434
Author(s):  
Alejandro E Rodríguez-Sánchez ◽  
Héctor Plascencia-Mora ◽  
Elías R Ledesma-Orozco ◽  
Eduardo Aguilera-Gómez ◽  
Diego A Gómez-Márquez

The expanded polystyrene foam is widely used as a protective material in engineering applications where energy absorption is critical for the reduction of harmful dynamic loads. However, to design reliable protective components, it is necessary to predict its nonlinear stress response with a good approximation, which makes it possible to know from the engineering design analysis the amount of energy that a product may absorb. In this work, the hyperfoam constitutive material model was used in a finite element model to approximate the mechanical response of an expanded polystyrene foam of three different densities. Additionally, an experimental procedure was performed to obtain the response of the material at three loading rates. The experimental results show that higher densities at high loading rates allow better energy absorption in the expanded polystyrene. As for the energy dissipation, high dissipation is obtained at higher densities at low loading rates. In the numerical results, the proposed finite element model presented a good performance since root mean square error values below 9% were obtained around the experimental compressive stress/strain curves for all tested material densities. Also, the prediction of energy absorption with the proposed model was around a maximum error of 5% regarding the experimental results. Therefore, the prediction of energy absorption and the compressive stress response of expanded polystyrene foams can be studied using the proposed finite element model in combination with the hyperfoam material model.


2007 ◽  
Vol 24-25 ◽  
pp. 71-76 ◽  
Author(s):  
Wen Jun Deng ◽  
Wei Xia ◽  
Long Sheng Lu ◽  
Yong Tang

2D finite element model with the same material for backup to minimize the burr size was developed to investigate mechanism of burr formation and burr minimization. The flowstress of the workpiece and backup material are taken as a function of strain, strain-rate and temperature. Temperature-dependent material properties are also considered. The Cockroft-Latham damage criterion has been adopted to simulate ductile fracture. The crack initiation and propagation is simulated by deleting the mesh element. The result shows putting a backup material behind the edge of the workpiece is an effective way to minimize the burr size. The effects of cutting condition, temperature and different backup material properties on the burr formation and burr size can be investigated using the developed finite element model. This model could be useful in the search for optimal tool geometry and cutting condition for burr minimization and for the modeling of a burr formation mechanism.


2014 ◽  
Vol 611 ◽  
pp. 188-193 ◽  
Author(s):  
Vladimír Ivančo ◽  
Gabriel Fedorko ◽  
Ladislav Novotný

In the paper, the influence of material model selection on the behaviour of Finite Element model of a compressed thin-walled channel is studied. Results of three material models of channels of two different lengths and two types of geometric imperfections are compared and discussed.


Author(s):  
Prabin Pathak ◽  
Y. X. Zhang

A simple, accurate and efficient finite element model is developed in ANSYS for numerical modelling of the nonlinear structural behavior of FRP strengthened RC beams under static loading in this paper. Geometric nonlinearity and material non-linear properties of concrete and steel rebar are accounted for this model. Concrete and steel reinforcement are modelled using Solid 65 element and Link 180 element, and FRP and adhesive are modelled using Shell 181element and Solid 45 element. Concrete is modelled using Nitereka and Neal’s model for compression, and isotropic and linear elastic model before cracking with strength gradually reducing to zero after cracking for tension. For steel reinforcement, the elastic perfectly plastic material model is used. FRPs are assumed to be linearly elastic until rupture and epoxy is assumed to be linearly elastic. The new FE model is validated by comparing the computed results with those obtained from experimental studies.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Melissa M. Gibbons ◽  
Xinglai Dang ◽  
Mark Adkins ◽  
Brian Powell ◽  
Philemon Chan

A detailed 3D finite element model (FEM) of the sheep thorax was developed to predict heterogeneous and volumetric lung injury due to blast. A shared node mesh of the sheep thorax was constructed from a computed tomography (CT) scan of a sheep cadaver, and while most material properties were taken from literature, an elastic–plastic material model was used for the ribs based on three-point bending experiments performed on sheep rib specimens. Anesthetized sheep were blasted in an enclosure, and blast overpressure data were collected using the blast test device (BTD), while surface lung injury was quantified during necropsy. Matching blasts were simulated using the sheep thorax FEM. Surface lung injury in the FEM was matched to pathology reports by setting a threshold value of the scalar output termed the strain product (maximum value of the dot product of strain and strain-rate vectors over all simulation time) in the surface elements. Volumetric lung injury was quantified by applying the threshold value to all elements in the model lungs, and a correlation was found between predicted volumetric injury and measured postblast lung weights. All predictions are made for the left and right lungs separately. This work represents a significant step toward the prediction of localized and heterogeneous blast lung injury, as well as volumetric injury, which was not recorded during field testing for sheep.


Sign in / Sign up

Export Citation Format

Share Document