The Study on the Preparation and Properties of PPO/PA66 Alloy with a New Type of Compatibtlizer B

2012 ◽  
Vol 501 ◽  
pp. 99-103 ◽  
Author(s):  
Ya Tong Zhang ◽  
Ying Li ◽  
Li Li ◽  
Xiong Wei Qu

By blending homemade compatibilizer with carboxylic acid functional groups into the basic materials of PPO and PA66, through twin-screw extruder blending, the PPO/PA66 alloy was prepared. The micromorphological and mechanical properties of PPO/PA66 blends with different contents of the compatibilizer were studied by transmission electron microscope (TEM), scanning electron microscope (SEM), mechanical test and Molau test. The results showed that the homemade compatibilizer can improve the mechanical property. Besides showing good effect on the compatibility improvement for PPO/PA blends,it has an in-situ compatibilization for the PPO/PA66 alloy

2011 ◽  
Vol 413 ◽  
pp. 449-453 ◽  
Author(s):  
Ya Tong Zhang ◽  
Ying Li ◽  
Li Li ◽  
Xiong Wei Qu

A new type compatibilizer-boric acid ester with carboxylic acid functional groups (refered as B) was synthesized and used in PPO/PA66 alloys. The PPO/PA66 alloys were produced by melting blending. The micromorphological and mechanical properties of PPO/PA66 blends with different contents of the compatibilizer were studied by transmission electron microscope (TEM), scanning electron microscope (SEM) and mechanical test. The effects of the compatibilizer B on the mechanical property and morphology of PPO/PA alloy were discussed. The results showed that, the compatibilizer B can also improve the mechanical property, besides showing good effect on the compatibility improvement for PPO/PA blends; it (B) acts as a compatibilizer for the blends by forming interim layer with dispersed phase PPO and continuous phase PA. The compatibilization of PPO and PA66 alloy was due to the chemical reaction between carboxyl group and amine group.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2459-2465 ◽  
Author(s):  
R. J. T. LIN ◽  
D. BHATTACHARYYA ◽  
S. FAKIROV

The concept of microfibrillar composite (MFC) has been used to create a new type of polymer composites, in which the reinforcing microfibrils are loaded with carbon nanotubes (CNT). Polyamide 66 (PA66) has been melt blended with polypropylene in a twin screw extruder with and without CNT, and thereafter cold drawn to create a fibrillar state as well as to align the CNT in the PA66 microfibrils. The drawn bristles were compression moulded at 180°C to prepare MFC plates. The scanning electron microscope (SEM) observations indicate near perfect distribution of CNT in the reinforcing PA66 microfibrils. Although the fibrillated PA66 is able to improve the tensile stiffness and strength as expected from the MFC structure, the incorporation of CNT does not exhibit any further enhancing effect. It rather adversely affects the mechanical properties due to poor interface adhesion between the matrix and the reinforcing microfibrils with the presence of CNT, as demonstrated by SEM. However, the resulting highly aligned CNT within the MFC are expected to affect the physical and functional properties of these composites.


2010 ◽  
Vol 92 ◽  
pp. 283-288 ◽  
Author(s):  
Ming Shan Yang

The wollastonite/PP composites were manufactured by twin-screw extruder and the effects of compatabilizer, feeding method and screw configuration on the properties of wollastonite/PP composites were investigated in this paper. The dispersion of fibrous wollastonite in PP matrix was determined by scanning electron microscope (SEM). The results showed that the strength, toughness and flowability of the composite were simultaneously guaranteed by using three different types of PP resins, and the interfacial adhesion was improved greatly by adding the compatabilizer of PP-g-MAH, which increases the comprehensive properties of wollastonite/PP composite. The fibrous dispersion of wollastonite in PP matrix was achieved by using of side feeding and the weak-shear screw configuration, which reaches the good reinforcing effect.


2010 ◽  
Vol 93-94 ◽  
pp. 169-172
Author(s):  
N. Wiriyanukul ◽  
S. Wacharawichanant

This work studies the effect of PE-g-MA compatibilizer on mechanical thermal and morphological properties of high density polyethylene (HDPE)/titanium dioxide (TiO2) nanocomposites. The HDPE/TiO2 nanocomposites with and without PE-g-MA compatibilizer were prepared by melt mixing technique in a twin screw extruder. The results found that Young's Modulus of HDPE/TiO2 nanocomposites increased with increasing TiO2 contents. The addition of PE-g-MA compatibilizer had no significant effect on the tensile strength and stress at break of HDPE/TiO2 nanocomposites. The decomposition temperatures of HDPE/TiO2 nanocomposites before and after adding PE-g-MA compatibilizer increased with increasing TiO2 contents. The dispersion of TiO2 nanoparticles in HDPE matrix was observed by scanning electron microscope (SEM). The dispersion of nanoparticles in HDPE matrix with PE-g-MA compatibilizer was relatively good, only a few aggregates exited.


Author(s):  
J Li ◽  
Y F Zhang

Polyamide 6 (PA6)-filled polytetrafluoroethylene (PTFE) at different compositions has been successfully prepared in a corotating twin screw extruder where PTFE acts as the polymer matrix and PA6 as the dispersed phase. The morphology and impact properties of these blends were investigated using a scanning electron microscope. The presence of PA6 particles dispersed in the PTFE continuous phase exhibited a coarse morphology. Increasing PA6 contents in the blend improved the impact properties at weak deformation. It was found that the interfacial adhesion played an important role in the creation of an interphase that was formed by the interaction between the PTFE and PA6. This induced an improvement in impact properties. In addition, the optimum impact properties were obtained when the content of PA6 is 30 vol%.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
A. S. Harmaen ◽  
A. Khalina ◽  
H. Mohd Ali ◽  
I. Nor Azowa

Slow-release bioplastic fertilizer (BpF) composites were developed by processing oil palm empty fruit bunch (EFB), fertilizer, and poly(hydroxybutyrate-co-valerate) (PHBv) using extrusion techniques with controlled formulation and temperature. The temperature was kept at 150°C for 3 to 5 min during processing using twin-screw extruder. The PHBv lost weight gradually with the increasing temperature and its thermal degradation occurred initially at 263.4°C and reached the maximum at 300.7°C. Scanning electron microscope (SEM) images showed that the bonding of all composites created small gaps between matrices polymer and fiber because the hydrophilic characteristic of EFB fibers weakened the interfacial bonding. PHBv/EFB/NPKC2 showed faster biodegradation over PHBv/NPKC1 and PHBv/NPKC2, which was 99.35% compared to 68.66% and 90.28%, respectively.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
J. D. Hutchison

When the transmission electron microscope was commercially introduced a few years ago, it was heralded as one of the most significant aids to medical research of the century. It continues to occupy that niche; however, the scanning electron microscope is gaining rapidly in relative importance as it fills the gap between conventional optical microscopy and transmission electron microscopy.IBM Boulder is conducting three major programs in cooperation with the Colorado School of Medicine. These are the study of the mechanism of failure of the prosthetic heart valve, the study of the ultrastructure of lung tissue, and the definition of the function of the cilia of the ventricular ependyma of the brain.


Author(s):  
K. Shibatomi ◽  
T. Yamanoto ◽  
H. Koike

In the observation of a thick specimen by means of a transmission electron microscope, the intensity of electrons passing through the objective lens aperture is greatly reduced. So that the image is almost invisible. In addition to this fact, it have been reported that a chromatic aberration causes the deterioration of the image contrast rather than that of the resolution. The scanning electron microscope is, however, capable of electrically amplifying the signal of the decreasing intensity, and also free from a chromatic aberration so that the deterioration of the image contrast due to the aberration can be prevented. The electrical improvement of the image quality can be carried out by using the fascionating features of the SEM, that is, the amplification of a weak in-put signal forming the image and the descriminating action of the heigh level signal of the background. This paper reports some of the experimental results about the thickness dependence of the observability and quality of the image in the case of the transmission SEM.


Author(s):  
S. Takashima ◽  
H. Hashimoto ◽  
S. Kimoto

The resolution of a conventional transmission electron microscope (TEM) deteriorates as the specimen thickness increases, because chromatic aberration of the objective lens is caused by the energy loss of electrons). In the case of a scanning electron microscope (SEM), chromatic aberration does not exist as the restrictive factor for the resolution of the transmitted electron image, for the SEM has no imageforming lens. It is not sure, however, that the equal resolution to the probe diameter can be obtained in the case of a thick specimen. To study the relation between the specimen thickness and the resolution of the trans-mitted electron image obtained by the SEM, the following experiment was carried out.


Sign in / Sign up

Export Citation Format

Share Document