Preparation and Characteristic Development of Nano Zn2SiO4: Mn Green Phosphors by La2O3 Doping

2012 ◽  
Vol 512-515 ◽  
pp. 1520-1523
Author(s):  
Fann Wei Yang ◽  
Chien Min Cheng ◽  
Kai Huang Chen

In this experimental, solid state method is used to synthesize proportioned nano-ZnO and SiO2 powders into Zn2SiO4 phosphor, and to achieve better control on grain size and grain shape than traditional powder. La is used to replace Mn; and to achieve better control on grain size and grain shape than traditional powder. With different sintering conditions, With different sintering conditions, the effect of the luminescent intensity due to sintering temperature and the concentration of activator would be discussed by the X-Ray Diffraction, SEM and TEM were utilized in the characterization of phase purity and microstructure of phosphor particles. Photoluminescence (PL) spectroscopy was utilized to characterize the optical properties. This use of phosphor materials is the application of the main light source, display components. Therefore, our study zinc silicate as the main principle of doping Mn, La of the characteristics of, expects to find the best glow.

2013 ◽  
Vol 591 ◽  
pp. 272-276
Author(s):  
Fang Zhang ◽  
Chao Song ◽  
Ling Li Ma ◽  
Xiao Li Xu ◽  
Zi Fei Peng

Sr2CeO4: Ho3+ was prepared by high-temperature solid-state method. The products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and photo luminescent (PL). The Sr2CeO4:Ho3+ phosphors showed a red emission under the near-ultraviolet excitation (280 nm) and the main emission centered at 475 nm. It has been found that A+ (A+ = Li+, Na+ or K+) codoped Sr2CeO4: Ho3+ phosphors could lead to a remarkable increase of photoluminescence. Luminous intensity was the highest when doping Li+ ions. Investigation indicated that Sr2Ce0.989O4: 0.001Ho3+, 0.01Li+ exhibited the strongest emission. The average particle size was about 6 um. The optimum sintering temperature was 1200 °C and the possible mechanism was also discussed.


2011 ◽  
Vol 412 ◽  
pp. 61-64
Author(s):  
Xiao Bo Wu ◽  
Da Zhi Sun ◽  
Dan Yu Jiang ◽  
Hai Fang Xu ◽  
De Xin Huang ◽  
...  

3Y-TZP powder has been successfully synthesized by gel solid-state method. The structural phases of powder particles were analyzed by X-ray diffraction and the morphology was analyzed by scanning electron microscopy. The average size of grains was 230 nm. The sintering behavior, mechanical properties and microstructure of 3Y-TZP ceramics sintered by this powder were investigated. The experiment results showed that the mechanical properties of ceramics were excellent.


2014 ◽  
Vol 602-603 ◽  
pp. 1009-1012
Author(s):  
Fann Wei Yang ◽  
Chien Min Cheng ◽  
Kai Huang Chen

The subject of this work was to study the photoluminescence characteristics of nanoZnO and SiO2powders into Zn2SiO4phosphor, and to achieve better control on grain size and grain shape than traditional powder. The manganese elements were used to replace Zn2SiO4defects and to achieve better control on grain size and grain shape than traditional powder. With different sintering atmosphere conditions, the effect of the photoluminescence intensity due to sintering temperature and the concentration of activator were be discussed by the X-Ray diffraction, SEM and TEM were utilized in the characterization of phase purity and microstructure of phosphor particles.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 666
Author(s):  
Lorena Emanuelli ◽  
Alberto Molinari ◽  
Massimo Pellizzari

Cobalt is the most used metal binder in hard metals since its extraordinary wetting, adhesion and mechanical properties. Nevertheless, it has been recognized genotoxic and cancerogenic with higher toxicity in combination with WC. To substitute Co with an alternative binder, the interaction between the binder and WC must be taken into account. In this work, IN625 is considered as a binder alternative due to its desirable combination of high-temperature strength and corrosion/oxidation resistance. A characterization of the interaction between WC and IN625 was carried out by means of Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDXS) and X-Ray Diffraction (XRD). Depending on the sintering temperatures, different phases were evidenced at the WC–IN625 superalloy interface. From 1250 °C to 1300 °C, where solid-state sintering takes place, (Cr,Mo)23C6, W2C and (Cr,W) solid solutions were detected. At a sintering temperature of 1350 °C, IN625 melts and the formation of additional phases, such as an intermetallic Ni4W phase and (Mo,W) and (Mo,Nb) solid solutions, were observed. The precipitation of NbC and (Mo,Cr)23C6 carbides in IN625 was also detected.


2019 ◽  
Vol 290 ◽  
pp. 233-238 ◽  
Author(s):  
Arlina Binti Ali ◽  
Abdul Halim Shaari ◽  
Soo Kien Chen ◽  
Julie Juliewatty Mohamed ◽  
Nurul’ain Mohd Kamal ◽  
...  

In this paper, solid state method was using to synthesize the of magnesium diboride (MgB2) added in Bi 1.6Pb 0.4Sr2Ca2Cu3Oδ(Bi-2223) superconductor from 0.00 to 0.10 wt.%. The effect on additions were investigated through X-ray Diffraction (XRD), resistance-temperature (R-T) measurement and Scanning Electron Microscope (SEM). From the XRD result, volume fraction of Bi-2223 showed the highest volume percentage was 76 % correspond to addition with MgB2=0.02 wt.% and slightly decreased the percentage while increased the additions. From the R-T measurement, all samples showed the metallic behavior in the normal state. Morphology images showed that the grains were flaky plates and the size slightly increased. These results revealed that, additions of magnesium diboride change the microstructure and decrease the superconducting transition.


2016 ◽  
Vol 703 ◽  
pp. 316-320
Author(s):  
Hai Feng Chen ◽  
Jing Ling Hu ◽  
Bing Xu

Using NH4VO3, Bi (NO3)3•5H2O and Co (NO3)2•6H2O as raw materials, Co doped BiVO4 (Co/BiVO4) photocatalysts were successfully prepared by solid state method. And the photo catalytic properties were test in this work. Crystal structures of these samples were characterized by X-ray diffraction (XRD). The Methyl Orange (MO) was simulated as the sewage under the visible light to explorer the influence of the illumination time and the mass of photocatalyst. The visible-light absorption spectrum of BiVO4 was broadening with doping Co. It was found that the Co/BiVO4 had higher photocatalytic activity than pure BiVO4 .The reason of enhanced catalytic effect also had been analyzed and discussed in the article.


2021 ◽  
Vol 19 (11) ◽  
pp. 108-115
Author(s):  
Nihad Ali Shafeek

This research contains preparing the superconducting compound Bi2-xAgxSr2Ca2Cu3O10+δ and studying its structural and electrical characteristics. The samples were prepared using the solid-state method in two stages, and different concentrations of x were (x= 0.2,0.4,0.6,0.8) replaced instead of bismuth Bi. Then, using a hydraulic press 9 ton/cm2 and sintering with a temperature of 850°C, the samples were pressed. Next, x-ray diffraction is used to study the structural properties. The study of these samples was presented in different proportions of x values, where x = 0.4 is the best compensation ratio of x. A critical temperature of 1400C and the Tetragonal structure was got. After that, the effect of laser nidinium _ yak (Nd: YAG laser) was used on the compositional. It was found that the temperature value increased, so we got the best critical temperature, which is 142 0C.


Author(s):  
Adelyna Oktavia ◽  
Kurnia Sembiring ◽  
Slamet Priyono

Hospho-material of olivine, LiMnPO4 identified as promising for cathode material generation next Lithium-ion battery and has been successfully synthesized by solid-state method with Li2Co3, 2MnO2, 2NH4H2PO4 as raw material. The influence of initial concentration of precursors at kalsinasi temperatures (400-800 ° C) flows with nitrogen. The purity and composition phase verified by x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), spectroscopy, energy Dispersive x-ray Analysis (EDS), Raman spectra. General investigation shows that there is a correlation between the concentration of precursors, the temperature and the temperature of sintering kalsinasi that can be exploited to design lithium-ion next generation.


2007 ◽  
Vol 26-28 ◽  
pp. 243-246
Author(s):  
Xing Hua Yang ◽  
Jin Liang Huang ◽  
Xiao Wang ◽  
Chun Wei Cui

BaBi4-xLaxTi4O15 (BBLT) ceramics were prepared by conventional solid phase sintering ceramics processing technology. The crystal structure and the microstructure were detected by X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD analyses show that La3+ ions doping did not change the crystal structure of BBT ceramics. The sintering temperature increased from 1120°C to 1150°C with increasing Lanthanum content from 0 to 0.5, but it widened the sintering temperature range from 20°C to 50°C and refined the grain size of the BBT ceramic. Additionally, polarization treatment was performed and finally piezoelectric property was measured. As a result, the piezoelectric constant d33 of the 0.1at.% doped BBLT ceramics reached its highest value about 22pc/N at polarizing electric field of 8kV/mm and polarizing temperature of 120°C for 30min.


2021 ◽  
Vol 1039 ◽  
pp. 307-312
Author(s):  
Mohammad Malik Abood ◽  
Osama Abdul Azeez Dakhil ◽  
Aref Saleh Baron

Methyl ammonium lead iodide CH3NH3PbI3 Perovskite was synthesized by a new method mixing between one and two steps, in addition, the ethanol solvent was used to dissolve CH3NH3I and compared with isopropanol solvent. The characterizations of synthesized perovskite samples included the structural properties, morphological characteristics and optical properties. The intensity and orientation in X-ray diffraction patterns appear clearly in ethanol solvent while disappearing at a peak at 12o due to the speed reaction of perovskite in this solvent. Additionally, the ethanol solvent increasing the grain size of perovskite which homogeneity of the surface morphology. the ethanol solvent cause a decrease in the wavelength of absorbance edge in addition to an increase in the energy bandgap value. Keywords: Ethanol Solvent, Perovskite, Photovoltaic Technologies, X-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document