Understanding of the Scattering of Incident Stress Waves by Defects on the Blind Side of Fuel Vent Hole

2013 ◽  
Vol 558 ◽  
pp. 400-410
Author(s):  
Cain Doherty ◽  
Wing Kong Chiu

This paper reports on findings that extend previous work for the purpose of in-situ structural health monitoring of defects on the blind side of open holes using plate waves. A series of computational studies is presented to understand how and why the ultrasonic scattered wave field can be detected on the accessible surface. The uniqueness of these findings is that the length-scale of the defect and the incident waves are comparable. The combination of the experimental-computational-analytical approach gives rise to new insights and guidance for the quantification of defects located in hard-to-inspect regions of future unitised metallic and composite structures. The outcomes advance the knowledge base of inspection of hard-to-access regions with actuators and sensors placed in easily accessible locations.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Erik J. Askins ◽  
Marija R. Zoric ◽  
Matthew Li ◽  
Zhengtang Luo ◽  
Khalil Amine ◽  
...  

AbstractElectrocatalytic nanocarbon (EN) is a class of material receiving intense interest as a potential replacement for expensive, metal-based electrocatalysts for energy conversion and chemical production applications. The further development of EN will require an intricate knowledge of its catalytic behaviors, however, the true nature of their electrocatalytic activity remains elusive. This review highlights work that contributed valuable knowledge in the elucidation of EN catalytic mechanisms. Experimental evidence from spectroscopic studies and well-defined molecular models, along with the survey of computational studies, is summarized to document our current mechanistic understanding of EN-catalyzed oxygen, carbon dioxide and nitrogen electrochemistry. We hope this review will inspire future development of synthetic methods and in situ spectroscopic tools to make and study well-defined EN structures.


2020 ◽  
Vol 54 (25) ◽  
pp. 3895-3917 ◽  
Author(s):  
Garrett W Melenka ◽  
Cagri Ayranci

Braiding is an advanced textile manufacturing method that is used to produce two-dimensional and three-dimensional components. Unlike laminated structures, braids have interlaced yarns that form a continuity between layers. This structure allows for improved impact resistance, damage tolerance, and improved through-thickness reinforcement. Despite the numerous advantages of braided composites, braids also have shortcomings. Their highly complex fiber architecture presents challenges in the availability and choice of the strain measuring and characterization techniques. Advanced measurement methods such as optical strain measurement, micro-computed tomography, and in situ strain measurement are required. Optical strain measurement methods such as digital image correlation and high-speed imaging are necessary to accurately measure the complex deformation and failure that braided composites exhibit. X-ray-based micro-computed tomography measurements can provide detailed geometric and morphologic information for braided structures, which is necessary for accurately predicting the mechanical properties of braided structures. Finally, in situ strain measurement methods will provide detailed information on the internal deformation and strain that exists within braided structures. In situ sensors will also allow for in-service health monitoring of braided structures. This paper provides a detailed review of the aforementioned sensing technologies and their relation to the measurement of braided composite structures.


Author(s):  
Muhammad Rabiu Ado

AbstractHeavy oils and bitumen are indispensable resources for a turbulent-free transition to a decarbonized global energy and economic system. This is because according to the analysis of the International Energy Agency’s 2020 estimates, the world requires up to 770 billion barrels of oil from now to year 2040. However, BP’s 2020 statistical review of world energy has shown that the global total reserves of the cheap-to-produce conventional oil are roughly only 520.2 billion barrels. This implies that the huge reserves of the practically unexploited difficult-and-costly-to-upgrade-and-produce heavy oils and bitumen must be immediately developed using advanced upgrading and extraction technologies which have greener credentials. Furthermore, in accordance with climate change mitigation strategies and to efficiently develop the heavy oils and bitumen resources, producers would like to maximize their upgrading within the reservoirs by using energy-efficient and environmentally friendly technologies such as the yet-to-be-fully-understood THAI-CAPRI process. The THAI-CAPRI process uses in situ combustion and in situ catalytic reactions to produce high-quality oil from heavy oils and bitumen reservoirs. However, prolonging catalyst life and effectiveness and maximizing catalytic reactions are a major challenge in the THAI-CAPRI process. Therefore, in this work, the first ever-detailed investigations of the effects of alumina-supported cobalt oxide–molybdenum oxide (CoMo/γ-Al2O3) catalyst packing porosity on the performance of the THAI-CAPRI process are performed through numerical simulations using CMG STARS. The key findings in this study include: the larger the catalyst packing porosity, the higher the accessible surface area for the mobilized oil to reach the inner coke-uncoated catalysts and thus the higher the API gravity and quality of the produced oil, which clearly indicated that sulphur and nitrogen heteroatoms were catalytically removed and replaced with hydrogen. Over the 290 min of combustion period, slightly more oil (i.e. an additional 0.43% oil originally in place (OOIP)) is recovered in the model which has the higher catalyst packing porosity. In other words, there is a cumulative oil production of 2330 cm3 when the catalyst packing porosity is 56% versus a cumulative oil production of 2300 cm3 in the model whose catalyst packing porosity is 45%. The larger the catalyst packing porosity, the lower the mass and thus cost of the catalyst required per m3 of annular space around the horizontal producer well. The peak temperature and the very small amount of produced oxygen are only marginally affected by the catalyst packing porosity, thereby implying that the extents of the combustion and thermal cracking reactions are respectively the same in both models. Thus, the higher upgrading achieved in the model whose catalyst packing porosity is 56% is purely due to the fact that the extent of the catalytic reactions in the model is larger than those in the model whose catalyst packing porosity is 45%.


2019 ◽  
Vol 1 (2-2) ◽  
Author(s):  
Mohd Jumain Jalil ◽  
Intan Suhada Azmi ◽  
Arif Aminuddin Ahmad Zulkifli ◽  
Mohamad Helmi Mohd Asbi

The epoxidized vegetables oils can be used a raw material for a broad range of products, from pharmaceutical and plastics to paint and adhesives. Epoxidation of oleic acid was carried out by using hydrogen peroxide as an oxygen donor and formic acid as an oxygen carrier in the presence of sulphuric acid act as catalyst. The crude oleic acid contained 75% oleic acid, 12.2% linoleic acid, 6.5% palmitic acid and 7.5% stearic acid, and had an iodine value of 98.99 g/100 g. The epoxidation of oleic acid with almost complete conversion of unsaturated carbon and negligible oxirane cleavage can be obtained by the in situ techniques. An analytical approach for the prediction of the partition coefficient for formic acid between oleic acid and water, dependent on temperature and composition, has been proposed.


2021 ◽  
Author(s):  
Nhan Nu Hong Ton ◽  
Binh Khanh Mai ◽  
Thanh Vinh Nguyen

Abstract: Hydroboration reaction of alkynes is one of the most synthetically powerful tools to access organoboron compounds, versatile precursors for cross coupling chemistry. This type of reaction has traditionally been mediated by transition metal or main group catalysts. Herein, we report a novel method using tropylium salts, typically known as organic oxidants and Lewis acids, to efficiently promote the hydroboration reaction of alkynes. A broad range of vinylboranes can be easily accessed via this metal-free protocol. Similar hydroboration reactions of alkenes and epoxides can also be efficiently catalyzed by the same tropylium catalysts. Experimental studies and DFT calculations suggested that the reaction follows an uncommon mechanistic paradigm, which is triggered by a hydride abstraction of pinacolborane with tropylium ion. This is followed by a series of <i>in situ</i> counterion-activated substituent exchanges to generate boron intermediates that promote the hydroboration reaction.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 392 ◽  
Author(s):  
Meimei Wu ◽  
Chao Zhang ◽  
Yihan Ji ◽  
Yuan Tian ◽  
Haonan Wei ◽  
...  

This paper introduces a three-dimensional (3D) pyramid to the polymers-plasmonic hybrid structure of polymethyl methacrylate (PMMA) composite silver nanoparticle (AgNPs) as a higher quality flexible surface-enhanced Raman scattering (SERS) substrate. Benefiting from the effective oscillation of light inside the pyramid valley could provide wide distributions of 3D “hot spots” in a large space. The inclined surface design of the pyramid structure could facilitate the aggregation of probe molecules, which achieves highly sensitive detection of rhodamine 6G (R6G) and crystal violet (CV). In addition, the AgNPs and PMMA composite structures provide uniform space distribution for analyte detection in a designated hot spot zone. The incident light can penetrate the external PMMA film to trigger the localized plasmon resonance of the encapsulated AgNPs, achieving enormous enhancement factor (~ 6.24 × 10 8 ). After undergoes mechanical deformation, the flexible SERS substrate still maintains high mechanical stability, which was proved by experiment and theory. For practical applications, the prepared flexible SERS substrate is adapted to the in-situ Raman detection of adenosine aqueous solution and the methylene-blue (MB) molecule detection of the skin of a fish, providing a direct and nondestructive active-platform for the detecting on the surfaces with any arbitrary morphology and aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document