Research on Wear Mechanism of Self-Sharpening Fine Super-Hard Abrasive Tool

2013 ◽  
Vol 589-590 ◽  
pp. 312-316
Author(s):  
Zhao Zhong Zhou ◽  
Kai Ping Feng ◽  
Bing Hai Lv ◽  
Hong Wei Fan ◽  
Ju Long Yuan

To achieve the components of the highest quality in terms of shape, dimension, surface integrity and high efficiency in the course of processing difficult-to-cut material, the concept of self-sharpening fine super-hard abrasive tool as machining tool is put forward, this method not only improves the dressing performance of the abrasive tool, but also ensures the accuracy and durability of the abrasive tool, self-sharpening fine super-hard abrasive tool lapping technology is developed by using Zn as abrasive fillers and using FeCl3 solution as lapping liquid, the wear form of the self-sharpening fine super-hard abrasive tool and the influence of abrasive wear on the material removal form is studied, research shows that the wear of the self-sharpening fine super-hard abrasive tool is mainly in breakage wear, which has a good self-sharpening performance, and the material removal form is mainly in two-body material removal mode., which means this method has good holding force of abrasives.

2010 ◽  
Vol 126-128 ◽  
pp. 88-95
Author(s):  
Xiao Min Sheng ◽  
Li Guo ◽  
Kun Tang ◽  
Hai Qing Mi ◽  
Jian Wu Yu ◽  
...  

Focusing on the characteristic of hard-to-grinding for viscous materials, such as titanium alloy, systemic process experiments were done about grinding viscous materials, such as TC4 titanium alloy, under the high efficiency deep grinding (HEDG). Based on the analysis to the changing and characteristic of unit area grinding force F' with maximum undeformed chip thickness hmax and equivlent cutting thickness aeq , this paper discussed the changing of its material removal mode and analyzed the changing and characteristic of grinding force ratio N, specific grinding energy es with corresponding parameters further. Then, it was analyzed about the consumption of grinding power on the process of HEDG for TC4 titanium alloy. The experiment results reveal that application of HEDG can improve machining efficiency of grinding viscous materials.


2021 ◽  
pp. 089270572110286
Author(s):  
Xinyue Zhang ◽  
Dekun Zhang ◽  
Kai Chen ◽  
Handong Xu ◽  
Cunao Feng

The complex movement of artificial joints is closely related to the wear mechanism of the prosthesis material, especially for the polymer prosthesis, which is sensitive to motion paths. In this paper, the “soft-soft” all-polymer of XLPE/PEEK are selected to study the influence of motion paths on the friction and wear performance. Based on the periodic characteristics of friction coefficient and wear morphology, this paper reveals the friction and wear mechanism of XLPE/peek under multi-directional motion path, and obtains the quantitative relationship between friction coefficient and the aspect ratios of “∞”-shape motion path, which is of great significance to reveal and analyze the wear mechanism of “soft” all-polymer under multi-directional motion path. The results show that the friction coefficient is affected by the motion paths and have periodicity. Morever, under the multi-directional motion paths, the wear of PEEK are mainly abrasive wear and adhesive wear due to the cross shear effect, while the wear of XLPE is mainly abrasive wear with plastic accumulation. In addition, the friction coefficient is greatly affected the aspect ratios Rs-l of “∞”-shape and loads. Meanwhile, the wear morphologies are greatly affected by the aspect ratios Rs-l of “∞”-shape, but less affected by loads.


Author(s):  
Hagen Klippel ◽  
Stefan Süssmaier ◽  
Matthias Röthlin ◽  
Mohamadreza Afrasiabi ◽  
Uygar Pala ◽  
...  

AbstractDiamond wire sawing has been developed to reduce the cutting loss when cutting silicon wafers from ingots. The surface of silicon solar cells must be flawless in order to achieve the highest possible efficiency. However, the surface is damaged during sawing. The extent of the damage depends primarily on the material removal mode. Under certain conditions, the generally brittle material can be machined in ductile mode, whereby considerably fewer cracks occur in the surface than with brittle material removal. In the presented paper, a numerical model is developed in order to support the optimisation of the machining process regarding the transition between ductile and brittle material removal. The simulations are performed with an GPU-accelerated in-house developed code using mesh-free methods which easily handle large deformations while classic methods like FEM would require intensive remeshing. The Johnson-Cook flow stress model is implemented and used to evaluate the applicability of a model for ductile material behaviour in the transition zone between ductile and brittle removal mode. The simulation results are compared with results obtained from single grain scratch experiments using a real, non-idealised grain geometry as present in the diamond wire sawing process.


Author(s):  
Shao Lifan ◽  
Ge Yuan ◽  
Kong Dejun

In order to improve the friction and wear properties of Cu10Al–MoS2 coating, the addition of CeO2 is one of the present research hot spots. In this work, Cu10Al–MoS2 coatings with different CeO2 mass fractions were successfully fabricated on Q235 steel using a laser cladding. The microstructure and phase compositions of obtained coatings were analyzed using an ultra-depth of field microscope and X-ray diffraction, respectively. The friction-wear test was carried out under oil lubrication using a ball-on-disk wear tester, and the effects of CeO2 mass fraction on the microstructure, hardness, and friction-wear properties were studied, and the wear mechanism was also discussed. The results show that the laser cladded Cu10Al–MoS2 coatings with the different CeO2 mass fractions were mainly composed of Cu9Al4, Cu, AlFe3, Ni, MoS2, and CeO2 phases. The Vickers-hardness (HV) of Cu10Al–8MoS2–3CeO2, Cu10Al–8MoS2–6CeO2, and Cu10Al–8MoS2–9CeO2 coatings was 418, 445, and 457 HV0.3, respectively, which indicates an increase in hardness with the increase of CeO2 mass fraction. The average coefficients of friction (COF) and wear rates decrease with the increase of CeO2 mass fraction, presenting the outstanding friction reduction and wear resistance performances. The wear mechanism of Cu10Al–MoS2 coatings is changed from abrasive wear with slight fatigue wear to abrasive wear with the increase of CeO2 mass fraction.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1456
Author(s):  
Qiang Wang ◽  
Runling Qian ◽  
Ju Yang ◽  
Wenjuan Niu ◽  
Liucheng Zhou ◽  
...  

In order to improve the wear resistance of 27SiMn steel substrate, Fe−based alloy coatings were prepared by laser cladding technology in the present study. In comparison to the conventional gravity powder feeding (GF) process, high−speed powder feeding (HF) process was used to prepare Fe−based alloy coating on 27SiMn steel substrate. The effect of diversified energy composition of powder materials on the microstructure and properties of coatings were systematically studied. X−ray diffractometer (XRD), optical microscope (OM) and scanning electron microscope (SEM) were used to analyze the phase structure and microstructure of Fe−based alloy coatings, and the hardness and tribological properties were measured by the microhardness tester and ball on disc wear tester, respectively. The results show that the microstructure of conventional gravity feeding (GF) coatings was composed of coarse columnar crystals. In comparison, owing to the diversification of energy composition, the microstructure of the high−speed powder feeding (HF) coatings consists of uniform and small grains. The total energy of the HF process was 75.5% of that of the GF process, proving that high−efficiency cladding can be achieved at lower laser energy. The refinement of the microstructure is beneficial to improve the hardness and wear resistance of the coating, and the hardness of the HF coating increased by 9.4% and the wear loss decreased to 80.5%, compared with the GF coating. The wear surface of the HF coating suffered less damage, and the wear mechanism was slightly adhesive wear. In contrast, wear was more serious in the GF coating, and the wear mechanism was transformed into severe adhesive wear.


2010 ◽  
Vol 431-432 ◽  
pp. 265-268 ◽  
Author(s):  
Yu Fei Gao ◽  
Pei Qi Ge

Based on reciprocating electroplated diamond wire saw (REDWS) slicing experiments, a study on REDWS machining brittle-ductile transition of single crystal silicon was introduced. The machined surfaces and chips were observed by using Scanning Electron Microscope (SEM), and some experimental evidences of the change of material removal mode had been obtained. The experimental results indicate there is a close relationship between material removal mode and the ratio r value of ingot feed speed and wire speed, through controlling and adjusting the r value, the material removal mode can be complete brittle, partial ductile and near-ductile removal.


2019 ◽  
Vol 8 (3) ◽  
pp. 104 ◽  
Author(s):  
Weilian Li ◽  
Jun Zhu ◽  
Yunhao Zhang ◽  
Yungang Cao ◽  
Ya Hu ◽  
...  

Scientific and appropriate visualizations increase the effectiveness and readability of disaster information. However, existing fusion visualization methods for disaster scenes have some deficiencies, such as the low efficiency of scene visualization and difficulties with disaster information recognition and sharing. In this paper, a fusion visualization method for disaster information, based on self-explanatory symbols and photorealistic scene cooperation, was proposed. The self-explanatory symbol and photorealistic scene cooperation method, the construction of spatial semantic rules, and fusion visualization with spatial semantic constraints were discussed in detail. Finally, a debris flow disaster was selected for experimental analysis. The experimental results show that the proposed method can effectively realize the fusion visualization of disaster information, effectively express disaster information, maintain high-efficiency visualization, and provide decision-making information support to users involved in the disaster process.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1918
Author(s):  
Dongpo Wang ◽  
Shouxiang Lu ◽  
Dong Xu ◽  
Yuanlin Zhang

C/SiC composites are the preferred materials for hot-end structures and other important components of aerospace vehicles. It is important to reveal the material removal mechanism of ultrasound vibration-assisted grinding for realizing low damage and high efficiency processing of C/SiC composites. In this paper, a single abrasive particle ultrasound vibration cutting test was carried out. The failure modes of SiC matrix and carbon fiber under ordinary cutting and ultrasound cutting conditions were observed and analyzed. With the help of ultrasonic energy, compared with ordinary cutting, under the conditions of ultrasonic vibration-assisted grinding, the grinding force is reduced to varying degrees, and the maximum reduction ratio reaches about 60%, which means that ultrasonic vibration is beneficial to reduce the grinding force. With the observation of cutting debris, it is found that the size of debris is not much affected by the a p with ultrasound vibration. Thus, the ultrasound vibration-assisted grinding method is an effective method to achieve low damage and high efficiency processing of C/SiC composites.


Sign in / Sign up

Export Citation Format

Share Document