Preparation and Development of Bioglass by Sol-Gel Method

2013 ◽  
Vol 591 ◽  
pp. 34-39
Author(s):  
Chuan Zhong Chen ◽  
Xiang Guo Meng ◽  
Hui Jun Yu ◽  
Han Yang ◽  
Ting He ◽  
...  

Bioglass is a good bioactive material and has been used in many medical fields, include drug delivery systems, non-load-bearing implants and bone cements. Sol-gel is a good method in the preparation of coating materials. It also can be used in the preparation of bioactive glass. In this paper, the principles and technical processes are introduced. The effects on characteristics of bioactive glasses of the factors such as H2O dosage, ethanol dosage, gel temperature and activator are analyzed in detail. The research progress in preparation of sol-gel bioactive glasses is summarized. Finally the development foreground of sol-gel bioglass is also expected.

2006 ◽  
Vol 13 (01) ◽  
pp. 93-102 ◽  
Author(s):  
JIE MA ◽  
CHUANZHONG CHEN ◽  
LIANG YAO ◽  
QUANHE BAO

Since the discovery of Bioglass® by Hench, bioactive glasses have been used in many medical applications, such as drug delivery systems, nonload-bearing implants, and bone cements because of their excellent bioactivity and biocompatibility. However, due to their poor mechanical properties, these glasses cannot be used in load-bearing applications, where the metallic alloys are still main materials. One useful approach to solving the mechanical limitations of bioactive glasses is to apply the glasses as the coating on mechanically tough substrates; it was also recognized early that bioactive glasses could be used as coatings for prosthetic metallic implants. In this paper, the mechanism, characterization, and current status of some methods of preparation for bioactive glass coating on implants are introduced. In the end, to get the homogeneous and compact coating with perfect bonding strength, some ideas of improving the performance of coatings are also presented.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1564
Author(s):  
Jong Tae Leem ◽  
Woong Cheol Seok ◽  
Ji Beom Yoo ◽  
Sangkug Lee ◽  
Ho Jun Song

EPOSS of polyhedral oligomeric silsesquioxanes (POSS) mixture structure and LPSQ of ladder-like polysilsesquioxane (LPSQ) structure were synthesized via sol–gel reaction. EPSQ had a high molecular weight due to polycondensation by potassium carbonate. The EPSQ film showed uniform surface morphology due to regular double-stranded structure. In contrast, the EPOSS-coated film showed nonuniform surface morphology due to strong aggregation. Due to the aggregation, the EPOSS film had shorter d-spacing (d1) than the EPSQ film in XRD analysis. In pencil hardness and nanoindentation analysis, EPSQ film showed higher hardness than the EPOSS film due to regular double-stranded structure. In addition, in the in-folding (r = 0.5 mm) and out-folding (r = 5 mm) tests, the EPSQ film did not crack unlike the EPOSS coated film.


2013 ◽  
Vol 284-287 ◽  
pp. 230-234
Author(s):  
Yu Jen Chou ◽  
Chi Jen Shih ◽  
Shao Ju Shih

Recent years mesoporous bioactive glasses (MBGs) have become important biomaterials because of their high surface area and the superior bioactivity. Various studies have reported that when MBGs implanted in a human body, hydroxyl apatite layers, constituting the main inorganic components of human bones, will form on the MBG surfaces to increase the bioactivity. Therefore, MBGs have been widely applied in the fields of tissue regeneration and drug delivery. The sol-gel process has replaced the conventional glasses process for MBG synthesis because of the advantages of low contamination, chemical flexibility and lower calcination temperature. In the sol-gel process, several types of surfactants were mixed with MBG precursor solutions to generate micelle structures. Afterwards, these micelles decompose to form porous structures after calcination. Although calcination is significant for contamination, crystalline and surface area in MBG, to the best of the authors’ knowledge, only few systematic studies related to calcination were reported. This study correlated the calcination parameters and the microstructure of MBGs. Microstructure evaluation was characterized by transmission electron microscopy and nitrogen adsorption/desorption. The experimental results show that the surface area and the pore size of MBGs decreased with the increasing of the calcination temperature, and decreased dramatically at 800°C due to the formation of crystalline phases.


Author(s):  
Philipp Knospe ◽  
Patrick Böhm ◽  
Jochen Gutmann ◽  
Michael Dornbusch

AbstractNowadays, coating materials must meet high demands in terms of mechanical, chemical and optical properties in all areas of application. Amongst others, amines and isocyanates are used as crosslinking components for curing reactions, meeting the highly demanding properties of the coatings industry. In this work, a new crosslinking reaction for coatings based on oxazoline chemistry is investigated with the objective to overcome disadvantages of established systems and fulfill the need for sustainable coating compounds. The oxazoline-group containing resin, synthesized from commercially available substances, undergoes cationic self-crosslinking polymerization to build up a network based on urethane and amide moieties. NMR-, IR- and ES-mass spectroscopy are suitable techniques to characterize the synthesized oxazoline monomers, which are linked to polyisocyanates and polymerized afterwards via self-polymerization. The progress of crosslinking is followed by changes in IR spectra and by rheological measurements to calculate time dependent values for storage and loss modulus. The glass transition temperature of the resulting coating is determined, too. Furthermore, sol–gel-analysis is performed to determine the degree of crosslinking. After application on steel and aluminium panels, application tests are performed. In addition to excellent adhesion to the substrate, the polymer network shows promising mechanical properties and with that it could represent a new technology for the coatings industry.


2008 ◽  
Vol 396-398 ◽  
pp. 131-134 ◽  
Author(s):  
Ourania Menti Goudouri ◽  
Xanthippi Chatzistavrou ◽  
Eleana Kontonasaki ◽  
Nikolaos Kantiranis ◽  
Lambrini Papadopoulou ◽  
...  

Thermal treatment of bioactive glasses can affect their microstructure and thus their bioactivity. The aim of this study was the characterization of the thermally treated sol-gel-derived bioactive glass 58S at characteristic temperatures and the dependence of its bioactive behavior on the specific thermal treatment. The thermal behavior of the bioactive glass was studied by thermal analysis (TG/DTA). Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffractometry (XRD) were used for the characterization of the bioactive glass. The bioactive behavior in Simulated Body Fluid (SBF) was examined by Scanning Electron Microscopy (SEM-EDS) and FTIR. The major crystal phases after thermal treatment were Calcium Silicates, Wollastonite and Pseudowollastonite, while all thermally treated samples developed apatite after 48 hours in SBF. A slight enhancement of bioactivity was observed for the samples heated at the temperature range 910-970oC.


2021 ◽  
Vol 11 (12) ◽  
pp. 2313-2320
Author(s):  
Jian Zhao ◽  
Wei Li ◽  
Xin Dong ◽  
Jiying Chen

Based on bioactive glasses (BG) of 58S, sol–gel method is used to prepare strontium oxide substituted bioactive glasses (SrO-BG) with different strontium content. SrO-BG and nano hydroxyapatite (HAp) composite materials were synthesized using precipitation method. The phase composition and morphologies of the prepared materials were examined by x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The dissolution and bio-mineralization of SrO-BG and SrO-BG/HAp composites in SBF are investigated by immersion method. The effects of secretion components of macrophages regulated by strontium doped SrO-BG/HAp composites on the osteogenic differentiation (OD) of bone marrow mesenchymal stem cells (BMSCs) are analyzed. The results demonstrate that the SrO-BG can inhibit the dissolution of BG. Different proportions of SrO-BG/HAp composites show good ability to induce HAp in SBF. The bio-mineralization ability of SrO-BG/HAp composites increases with the increase of SrO-BG content. The results of dissolution behavior and bio-mineralization of SrO-BG/HAp composite show that the dissolution rate of each ion can be controlled by adjusting the content of SrO-BG in the composite, and then the degradation rate can effectively be controlled. The results of in vitro experiments show that SrO-BG/HAp composites with 2%, 5% and 8% strontium content are more effective in promoting M2 polarization of macrophages than SrO-BG/HAp composites with 0% strontium content. Among them, 5% strontium doped SrO-BG/HAp has the strongest effect on M2 polarization of macrophages, and the secretion of macrophages regulated by 5% strontium doped SrO-BG/HAp composite is more conducive to bone repair.


Author(s):  
Moussa Hamadouche ◽  
Alain Meunier ◽  
David C. Greenspan ◽  
Cinderella Blanchat ◽  
Jipin P. Zhong ◽  
...  
Keyword(s):  
Sol Gel ◽  

2014 ◽  
Vol 86 (5) ◽  
pp. 593-609 ◽  
Author(s):  
Yu Liu ◽  
Baihe Zhang ◽  
Faxing Wang ◽  
Zubiao Wen ◽  
Yuping Wu

AbstractThis article reviews the research progress in the intercalation compounds for cathode materials for supercapacitors. Typical methods to prepare various intercalation compounds with different nanostructures are summarized. More specifically, the approaches can be subdivided into physical routes such as sonication and microwaves, and chemical routes such as hydrothermal, sol-gel and template methods. The most recent work on nanostructured intercalation compounds including LiCoO2, LiMn2O4, Li[Ni1/3Co1/3Mn1/3]O2, Li1+xV3O8, NaxMnO2, and KxMnO2 is mainly focused including their preparation and electrochemical performance, and new trends in nanomaterials development for supercapacitors are pointed out.


2014 ◽  
Vol 96 ◽  
pp. 54-60 ◽  
Author(s):  
Anahí Philippart ◽  
Elena Boccardi ◽  
Lucia Pontiroli ◽  
Ana Maria Beltrán ◽  
Alexandra Inayat ◽  
...  

Novel silica-based bioactive glasses were successfully prepared by the sol-gel method. The optimized glass composition for fabrication of the scaffolds was (in mol.%) 60% SiO2 – 30% CaO - 5% Na2O - 5% P2O5 (60S30C5N5P). This composition was confirmed to develop a thick hydroxycarbonate apatite (HCA) layer in Simulated Body Fluid (SBF) after 7 days, as revealed by Fourier Transform Infrared Spectroscopy (FTIR), indicating the bioactive character of the scaffolds. The mesoporous nature of the glass structure allows the load of tetracycline and a sustained release of the drug in PBS during 7 days was measured.


Sign in / Sign up

Export Citation Format

Share Document