scholarly journals Densification as the Only Mechanism at Stake during Indentation of Silica Glass?

2014 ◽  
Vol 606 ◽  
pp. 53-60 ◽  
Author(s):  
Vincent Keryvin ◽  
Solene Gicquel ◽  
Ludovic Charleux ◽  
Jean Pierre Guin ◽  
Mariette Nivard ◽  
...  

Silica glass is known to exhibit permanent changes in density under very high pressures. These changes may reach 21%. The sharp indentation test develops pressures underneath the indenter that trigger densification. Recently, we have proposed a constitutive modeling of the pressure-induced process accounting for its salient features: densification threshold, hardening, saturation of densifica- tion and permanent increase in elastic moduli. We examine in this paper the possibility that densi- fication could be the only mechanism for creating an imprint by indentation. We consider different models with growing complexity that we implement in a finite element software. Results indicate that the combination of shear and pressure as a driving force to densification may account for the mechanical response of the indentation test as well as the presence of densified zone underneath the imprint.

2006 ◽  
Vol 22 (3) ◽  
pp. 213-220 ◽  
Author(s):  
K. J. Shou ◽  
F. W. Chang

AbstractIn this study, physical and numerical models were used to analyze pipe-soil interaction during pipejacking work. After calibrating with the physical modeling results, the finite element software ABAQUS [1] was used to study the pipejacking related behavior, such as surface subsidence, failure mechanism, pipe-soil interaction, etc. The results show that the driving force in the tunnelling face is very important and critical for pipejacking. Surface subsidence is mainly due to the lack of driving force, however, excessive driving force could cause the unfavorable surface heaving problem. It also suggests that the depth of the pipe is critical to determine a proper driving force to stabilize the tunnelling face.


RSC Advances ◽  
2016 ◽  
Vol 6 (31) ◽  
pp. 26361-26373 ◽  
Author(s):  
G. Rajasekaran ◽  
Avinash Parashar

A one atom-thick sheet of carbon exhibits outstanding elastic moduli and tensile strength in its pristine form but structural defects which are inevitable in graphene due to its production techniques can alter its structural properties.


During the researches upon high-pressure explosions of carbonic oxide-air, hydrogen-air, etc., mixtures, which have been described in the previous papers of this series, a mass of data has been accumulated relating to the influence of density and temperature upon the internal energy of gases and the dissociation of steam and carbon dioxide. Some time ago, at Prof. Bone’s request, the author undertook a systematic survey of the data in question, and the present paper summarises some of the principal results thereof, which it is hoped will throw light upon problems interesting alike to chemists, physicists and internal-combustion engineers. The explosion method affords the only means known at present of determining the internal energies of gases at very high temperatures, and it has been used for this purpose for upwards of 50 years. Although by no means without difficulties, arising from uncertainties of some of the assumptions upon which it is based, yet, for want of a better, its results have been generally accepted as being at least provisionally valuable. Amongst the more recent investigations which have attracted attention in this connection should be mentioned those of Pier, Bjerrum, Siegel and Fenning, all of whom worked at low or medium pressures.


1978 ◽  
Vol 234 (4) ◽  
pp. H371-H383 ◽  
Author(s):  
H. A. Kontos ◽  
E. P. Wei ◽  
R. M. Navari ◽  
J. E. Levasseur ◽  
W. I. Rosenblum ◽  
...  

The responses of cerebral precapillary vessels to changes in arterial blood pressure were studied in anesthetized cats equipped with cranial windows for the direct observation of the pial microcirculation of the parietal cortex. Vessel responses were found to be size dependent. Between mean arterial pressures of 110 and 160 mmHg autoregulatory adjustments in caliber, e.g., constriction when the pressure rose and dilation when the pressure decreased, occurred only in vessels larger than 200 micron in diameter. Small arterioles, less than 100 micron in diameter, dilated only at pressures equal to or less than 90 mmHg; below 70 mmHg their dilation exceeded that of the larger vessels. When pressure rose to 170- 200 mmHg, small vessels dilated while the larger vessels remained constricted. At very high pressures (greater than 200 mmHg) forced dilation was frequently irreversible and was accompanied by loss of responsiveness to hypocapnia. Measurement of the pressure differences across various segments of the cerebral vascular bed showed that the larger surface cerebral vessels, extending from the circle of Willis to pial arteries 200 micron in diameter, were primarily responsible for the adjustments in flow over most of the pressure range.


2009 ◽  
Vol 629 ◽  
pp. 231-262 ◽  
Author(s):  
ERIC JOHNSEN ◽  
TIM COLONIUS

A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined.


1987 ◽  
Vol 109 (1) ◽  
pp. 82-86 ◽  
Author(s):  
V. K. Stokes

Because material properties vary from point to point in nonhomogeneous materials, there is some question as to what “properties” are measured in tests such as the tensile test, and how such “properties” can be used in the mechanical design process. In this paper, the mechanical response of nonhomogeneous prismatic bars in pure bending has been shown to depend on parameters that are strongly coupled combinations of geometry and material properties. The purely geometry based inertia tensor in homogeneous beam theory is replaced in the nonhomogeneous case by the rigidity tensor, which combines geometry and material properties. Interpretations for the average elastic moduli, which would be determined by tests on nonhomogeneous materials, have been explored. Also discussed is the usefulness of such average moduli for predicting the mechanical response of nonhomogeneous bars.


Sign in / Sign up

Export Citation Format

Share Document