Numerical Simulation of Laser Forming of Aluminum Sponges: Effect of Temperature and Heat Treatments

2014 ◽  
Vol 611-612 ◽  
pp. 731-738 ◽  
Author(s):  
Fabrizio Quadrini ◽  
Denise Bellisario ◽  
Daniele Ferrari ◽  
Loredana Santo ◽  
Anna Santarsiero

Laser forming ofopen-cell aluminum foams can be modeled by means of 3D thermo-mechanical models but the correct evaluation of the alloy material properties is a key-factor for obtaining good predictions. In order to increase the model predictability from a quantitative point of view, further information about the material behavior under laser exposure is necessary. In this study the effect of the temperature on the mechanical properties of a commercial aluminum sponge has been evaluated in terms of yielding stress and tangent modulus. Experimental tests have been performed by compression and used to infer mechanical properties by means of a 3D FE model. The same approach has been used also to evaluate the effect of a heat treatment of the sponge on the material behavior during forming. In conclusion numerical simulation of laser heating has been used to show the effect of the laser-material interaction on the final homogeneity of processed foams.

Author(s):  
S. Bec ◽  
K. Demmou ◽  
J.-L. Loubet

This study aims to contribute to better understand the antiwear action of zinc dialkyldithiophosphate (ZDTP) additives used in car engine lubrication. The antiwear action of ZDTP is associated to the formation of a protective tribofilm onto the rubbing surface. On a mechanical point of view, the efficiency of ZDTP tribofilms results from equilibrium between film formation and wear rates, associated with appropriate rheological properties. In this work, the mechanical properties of a ZDTP tribofilm have been measured by nanoindentation in different test conditions in order to investigate the effect of temperature and strain rate. A Nanoindenter XP® entirely set into a climatic chamber was used to perform the nanoindentation tests. For all tests, an increase of the elastic modulus was observed from a threshold contact pressure value. This effect is similar to the anvil effect observed on polymers: in confined geometry, the elastic modulus increases versus hydrostatic pressure. For the tribofilm, in the studied range, this effect is enhanced at high temperature and low strain rate. Furthermore, when the temperature increases, a change in the rheological behavior of the tribofilm is observed. Up to about 50°C, the tribofilm exhibits viscoplastic behavior — the hardness increases versus strain rate — and above 50°C, the hardness decreases versus strain rate (“shear thinning-like” behavior).


2015 ◽  
Vol 651-653 ◽  
pp. 225-230 ◽  
Author(s):  
Antonino Ducato ◽  
Gianluca Buffa ◽  
Antonello Astarita ◽  
Antonino Squillace ◽  
Livan Fratini ◽  
...  

Titanium forging has been encountering a growing interest in the scientific and industrial communities because of the distinct advantages it provides with respect to machining, in terms of both mechanical properties of the product and material waste, thus significantly reducing the Buy to Fly ratio. In the paper, a numerical FE model, based on a tri-coupled approach and able to predict the microstructural evolutions of the workpiece during the process, is developed and set up. Calculated results are compared to experiments for a few industrial case studies. The final phases distribution in the forged parts is experimentally measured and compared to the FE model output finding satisfying overlapping.


2021 ◽  
Vol 11 (4) ◽  
pp. 1820
Author(s):  
Shijie Jiang ◽  
Tiankuo Dong ◽  
Yang Zhan ◽  
Weibing Dai ◽  
Ming Zhan

Due to the stratified nature of the manufacturing process, material extrusion (ME) parts have lower mechanical properties than those fabricated by traditional technology. This is one of the most significant defects hindering the development and application of this rapid prototyping technique. In this paper, vibration was applied to the ME process by using piezoelectric ceramics for the first time to improve the mechanical properties of the built parts. The vibrating ME equipment was established, and the specimens processed in different build directions were individually fabricated without applied vibration and with different applied vibrations. To quantify the effect of applied vibration on their mechanical properties and to summarize the influencing rule, a series of experimental tests were then performed on these specimens. A comparison between the testing results shows that the tensile strength and plasticity of the specimens, especially those processed in the Z direction, can be obviously improved by applied vibration. The orthogonal anisotropy is decreased obviously. The improvement becomes greater with increasing vibration frequency or amplitude. From the microscopic point of view, it can be seen that applied vibration can reduce the part’s defects of porosity and inclusion as well as separation between layers and, thereby, improve the bonding strength.


2019 ◽  
Vol 817 ◽  
pp. 73-79
Author(s):  
Stefano Invernizzi

The paper describes the finite element model simulation of reinforced adobe walls to assess the feasibility of an innovative strengthening technique for earthen constructions, which improves the seismic performance. The retrofitting technique is based on the application of geogrids on both sides of the earthen wall. The geogrid is comprised in the mud plaster layer, which is applied to the wall surface in two steps. No additional connections are put in place, and the connection between the geogrid and the wall is granted exclusively by the mud plaster. The numerical simulation accounted for the presence of adobe blocks and clay joints, as well as for the presence of the reinforcing geogrid and of the mud plaster. The nonlinear behavior of the material was modeled with smeared cracking in tension and plasticity in compression, allowing to minimize the number of fitting material parameters. The numerical results are compared with the output from experimental tests [1] performed on almost twenty small walls without reinforcement, or with different types of geogrids available from the market. The laboratory tests included simple compression, diagonal shear, and three-point bending. The tests and the numerical simulation revealed that the retrofitting system is particularly effective from the mechanical point of view thanks to the optimal ratio between the wall and the geogrid stiffness and strength. The reinforced samples showed increased strength and greatly increased ductility, which is very promising in particular with respect to the seismic load behavior. The material compatibility between the geogrid and the mud plaster and the earthen wall is also very good, mainly due to the fact that geogrids were developed primarily for soil stabilization applications. The analyzed retrofitting system looks very promising for both the seismic improvement of existing vernacular heritage and for application in new bio-architecture building contexts.


2012 ◽  
Vol 504-506 ◽  
pp. 1219-1224 ◽  
Author(s):  
Fabrizio Quadrini ◽  
Denise Bellisario ◽  
Daniele Ferrari ◽  
Loredana Santo

The numerical simulation of the compression behavior of open-cell aluminum foams is discussed as a way to extract material property information for laser forming simulation. A bilinear isotropic model was implemented for the alloy base material whereas a parametric approach was used to build the finite element model of the foam structure. Compression tests were performed on commercial foams with different pore size and density, and the results of lower density foam were used for the model validation. Numerical results show a good agreement with experimental data in terms of foam deformation under compression and required loads.


2013 ◽  
Vol 554-557 ◽  
pp. 1864-1871 ◽  
Author(s):  
Fabrizio Quadrini ◽  
Denise Bellisario ◽  
Daniele Ferrari ◽  
Loredana Santo ◽  
Anna Santarsiero

Laser forming of open-cell aluminum foams has been modeled by means of a 3D finite element model which is able to take into account the real foam geometry as well as the main process variables. A parametric procedure has been defined for the geometry construction and meshing, and the simulation run. In order to calibrate and validate numerical modeling, compression and flexure tests were performed on a closed-cell aluminum foam. The simulation of mechanical tests allowed a correct modeling of the aluminum alloy behavior under plastic deformation. The same material behavior was implemented in a complex thermo-mechanical model for laser bending simulation. The final model is able to predict the shape evolution during forming and the correlation between process variables and final bent angles.


The article focuses on the problem of the lack of objective evaluation of space-planning arrangement of buildings as a creative approach of the architect to the performing of functional tasks by the object. It is proposed to create a methodology for assessing the functional of space-planning solutions of buildings on the basis of numerical simulation of functional processes using the theory of human flows. There is a description of the prospects of using this method, which makes it possible to increase the coefficient of compactness, materials and works saving, more efficient use of space, reduce the cost of the life cycle of the building, save human forces and time to implement the functional of the building. The necessary initial data for modeling on the example of shopping and shopping-entertainment centers are considered. There are three main tasks for algorithmization of the functional of shopping centers. The conclusion is made about necessity of development of a method for objective assessment of buildings from the point of view of ergonomics of space-planning decisions based on the study of human behavior in buildings of different purposes.


2014 ◽  
Vol 35 (1) ◽  
pp. 121-135 ◽  
Author(s):  
Tomasz Rydzkowski ◽  
Iwona Michalska-Pożoga

Abstract The paper presents the summary of research on polymer melt particle motion trajectories in a disc zone of a screw-disk extruder. We analysed two models of its structure, different in levels of taken simplifications. The analysis includes computer simulations of material particle flow and results of experimental tests to determine the properties of the resultant extrudate. Analysis of the results shows that the motion of melt in the disk zone of a screw-disk extruder is a superposition of pressure and dragged streams. The observed trajectories of polymer particles and relations of mechanical properties and elongation of the molecular chain proved the presence of a stretching effect on polymer molecular chains.


2020 ◽  
pp. 313-317
Author(s):  
A.I. Kovtunov ◽  
Yu.Yu. Khokhlov ◽  
S.V. Myamin

Titanium—aluminum, titanium—foam aluminum composites and bimetals obtained by liquid-phase methods, are increasingly used in industry. At the liquid-phase methods as result of the reaction diffusion of titanium and aluminum is formed transitional intermetallic layer at the phase boundary of the composite, which reduces the mechanical properties of titanium and composite. To reduce the growth rate of the intermetallic layer between the layers of the composite and increase its mechanical properties, it is proposed to alloy aluminum melt with nickel. The studies of the interaction of titanium and molten aluminum alloyed with nickel made it possible to establish the effect of temperature and aluminizing time on the thickness, chemical and phase compositions of the transition intermetallic layer. The tests showed the effect of the temperature of the aluminum melt, the nickel concentration on the strength properties of titanium—aluminum bimetal.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Andreas M. Menzel ◽  
Hartmut Löwen

Abstract Magnetic gels and elastomers consist of magnetic or magnetizable colloidal particles embedded in an elastic polymeric matrix. Outstanding properties of these materials comprise reversible changes in their mechanical stiffness or magnetostrictive distortions under the influence of external magnetic fields. To understand such types of overall material behavior from a theoretical point of view, it is essential to characterize the substances starting from the discrete colloidal particle level. It turns out that the macroscopic material response depends sensitively on the mesoscopic particle arrangement. We have utilized and developed several theoretical approaches to this end, allowing us both to reproduce experimental observations and to make theoretical predictions. Our hope is that both these paths help to further stimulate the interest in these fascinating materials.


Sign in / Sign up

Export Citation Format

Share Document