Chemical and Heat Treatments for Inducing Bone-Bonding Ability of Ti-6Al-4V Pedicle Screw

2014 ◽  
Vol 631 ◽  
pp. 225-230 ◽  
Author(s):  
Seiji Yamaguchi ◽  
Koji Akeda ◽  
Koichiro Murata ◽  
Norihiko Takegami ◽  
Mikinobu Goto ◽  
...  

Pedicle screw (PS) system using Ti-6Al-4V PSs became popular in spinal instrumentation system. However, they sometimes case loosening and back-out from bone because of their poor bone-bonding ability. In the present study, Ti-6Al-4V alloy was subjected to the acid-heat or calcium-heat treatments that are effective for inducing high capacities of apatite formation and bone bonding on pure Ti. When the alloy was subjected to the acid-heat treatment, a surface layer composed of rutile and anatase TiO2 enriched with Al and V was produced. Thus the treated alloy was neutrally charged and did not form apatite in a simulated body fluid (SBF) even after 3 day. In contrast, when the alloy was subjected to the Ca-heat treatment, a surface layer composed of calcium titanate, anatase and rutile free from Al and V was produced. The treated alloy formed apatite in SBF within 3 days. When the Ti-6Al-4V PSs subjected to the Ca-heat treatment was implanted into vertebra of beagle dogs, they showed higher bone-bonding ability as well as bone contact area than those without the treatment. This kind of bioactive Ti-6Al-4V PSs might be useful for spinal instrumentation since they could prevent loosening and back-out from bone.

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2199
Author(s):  
Seiji Yamaguchi ◽  
Phuc Thi Minh Le ◽  
Seine A. Shintani ◽  
Hiroaki Takadama ◽  
Morihiro Ito ◽  
...  

In the orthopedic and dental fields, simultaneously conferring titanium (Ti) and its alloy implants with antibacterial and bone-bonding capabilities is an outstanding challenge. In the present study, we developed a novel combined solution and heat treatment that controllably incorporates 0.7% to 10.5% of iodine into Ti and its alloys by ion exchange with calcium ions in a bioactive calcium titanate. The treated metals formed iodine-containing calcium-deficient calcium titanate with abundant Ti-OH groups on their surfaces. High-resolution XPS analysis revealed that the incorporated iodine ions were mainly positively charged. The surface treatment also induced a shift in the isoelectric point toward a higher pH, which indicated a prevalence of basic surface functionalities. The Ti loaded with 8.6% iodine slowly released 5.6 ppm of iodine over 90 days and exhibited strong antibacterial activity (reduction rate >99%) against methicillin-resistant Staphylococcus aureus (MRSA), S. aureus, Escherichia coli, and S. epidermidis. A long-term stability test of the antibacterial activity on MRSA showed that the treated Ti maintained a >99% reduction until 3 months, and then it gradually decreased after 6 months (to a 97.3% reduction). There was no cytotoxicity in MC3T3-E1 or L929 cells, whereas apatite formed on the treated metal in a simulated body fluid within 3 days. It is expected that the iodine-carrying Ti and its alloys will be particularly useful for orthopedic and dental implants since they reliably bond to bone and prevent infection owing to their apatite formation, cytocompatibility, and sustainable antibacterial activity.


Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 561 ◽  
Author(s):  
Seiji Yamaguchi ◽  
Phuc Thi Minh Le ◽  
Morihiro Ito ◽  
Seine A. Shintani ◽  
Hiroaki Takadama

The main problem of orthopedic and dental titanium (Ti) implants has been poor bone-bonding to the metal. Various coatings to improve the bone-bonding, including the hydroxyapatite and titania, have been developed, and some of them have been to successfully applied clinical use. On the other hand, there are still challenges to provide antibacterial activity and promotion of bone growth on Ti. It was shown that a calcium-deficient calcium titanate coating on Ti and its alloys exhibits high bone-bonding owing to its apatite formation. In this study, Sr and Ag ions, known for their promotion of bone growth and antibacterial activity, were introduced into the calcium-deficient calcium titanate by a three-step aqueous solution treatment combined with heat. The treated metal formed apatite within 3 days in a simulated body fluid and exhibited antibacterial activity to Escherichia coli without showing any cytotoxicity in MC3T3-E1 preosteoblast cells. Furthermore, the metal slowly released 1.29 ppm of Sr ions. The Ti with calcium-deficient calcium titanate doped with Sr and Ag will be useful for orthopedic and dental implants, since it should bond to bone because of its apatite formation, promote bone growth due to Sr ion release, and prevent infection owing to its antibacterial activity.


2014 ◽  
Vol 922 ◽  
pp. 657-662 ◽  
Author(s):  
Sharidah Azuar Abdul Azis ◽  
John Kennedy ◽  
Peng Cao

In this study, hydroxyapatite (HA) coatings on Ti6Al4V substrate were deposited using an ion beam sputtering technique. Owing to its medical applications, the crystalline phases present in the HA must be controlled. This study investigated the effect of post-deposition heat treatment at different temperatures and evaluated the microstructure of the HA coatings and their behaviours in simulated body fluid (SBF). The post-deposition treatment of the as-deposited samples was carried out in an air-circulated furnace at a temperature between 3000C and 6000C. The XRD patterns reveal that the minimum temperature to transform the HA coating from amorphous to crystalline phase is 4000C. A higher temperature at 6000C leads to a growth of the crystalline HA phases. Fourier transform infrared spectroscopy (FTIR) measurements show the existence of hydroxyl and PO-bonds in all coatings and the amounts varied with temperature. Atomic Force Microscopy (AFM) study suggests that the nanostructured crystalline HA starts to grow at 4000C and becomes more obvious at a higher temperature of 6000C. The simulated body fluid (SBF) test reveals that better apatite formation with post deposition heat treatment at 6000C would potentially enhance the formation of new bone (osseointegration).


Author(s):  
Alaa A. Mohammed ◽  
Jawad K. Oleiwi

Polyetheretherketone is a semi-crystalline thermoplastic polymer, that so with heat treatments, it is possible to get different properties which are very important for the material performance. Heat treatment is a broadly utilized to develop the semi-crystalline polymers properties. In the present investigation, annealing of polyetheretherketone (PEEK) was carried out at temperatures above its glass transition temperature (Tg) to study its effects upon the biological conduct of the control and PEEK ternary composites. The bioactivity of the specimens was evaluated by investigating the apatite formation after immersion for different periods in a simulated body fluid (SBF). The biocompatibility of specimens was assessed by MTT assay. Additionally, the antibacterial property of the specimens versus S. aureus was observed with the optical density methods. The results manifested that the formation of hydroxyapatite was obviously observed on specimens after immersion for (7 and 14 days) in the simulated body fluid (SBF). Otherwise, the results of MTT assay recorded the PEEK specimens that excited the activity of fibroblasts, and therefore a high cytocompatibility was noticed and the specimens revealed antibacterial properties against S. aureus. So, the results of the bioactivity, biocompatibility and antibacterial tests in vitro demonstrated that the heat treatment enhanced biological behavior.


2018 ◽  
Vol 9 ◽  
pp. 204173141877417 ◽  
Author(s):  
Shiva Kamini Divakarla ◽  
Seiji Yamaguchi ◽  
Tadashi Kokubo ◽  
Dong-Wook Han ◽  
Jae Ho Lee ◽  
...  

The leading reason for implant revision surgery globally is lack of implant integration with surrounding bone. A new titanium alloy GUMMETAL® (Ti59Nb36Ta2Zr3O0.3) is currently used in biomedical devices and has a Young’s modulus that is better matched to bone. The surface was subject to NaOH, CaCl2, heat and water treatment (BioGum) after which the surfaces were evaluated using atomic force microscope, scanning electron microscope, X-ray diffractometer and elemental analysis using energy dispersive X-ray. To demonstrate enhanced bone bonding ability and cytocompatibility, apatite formation in simulated body fluid and in vitro stem cell attachment, proliferation and cytoskeleton organisation were examined. The formation of a ~200 nm nanoscale needle-like calcium titanate network on the surface following treatment was revealed and upon soaking in simulated body fluid, the formation of a ~5 µm layer of apatite. Metabolic activity of rat bone marrow stem cells on BioGum was increased in comparison to control and the cell number appeared greater, with more elongated morphology as early as 2 h post-seeding. This positions the modification as a simple and potentially universal technology for the improvement of implant integration.


2015 ◽  
Vol 9 (1) ◽  
pp. 29-41 ◽  
Author(s):  
Tadashi Kokubo ◽  
Seiji Yamaguchi

To reveal general principles for obtaining bone-bonding bioactive metallic titanium, Ti metal was heat-treated after exposure to a solution with different pH. The material formed an apatite layer at its surface in simulated body fluid when heat-treated after exposure to a strong acid or alkali solution, because it formed a positively charged titanium oxide and negatively charged sodium titanate film on its surface, respectively. Such treated these Ti metals tightly bonded to living bone. Porous Ti metal heat-treated after exposure to an acidic solution exhibited not only osteoconductive, but also osteoinductive behavior. Porous Ti metal exposed to an alkaline solution also exhibits osteoconductivity as well as osteoinductivity, if it was subsequently subjected to acid and heat treatments. These acid and heat treatments were not effective for most Ti-based alloys. However, even those alloys exhibited apatite formation when they were subjected to acid and heat treatment after a NaOH treatment, since the alloying elements were removed from the surface by the latter. The NaOH and heat treatments were also not effective for Ti-Zr-Nb-Ta alloys. These alloys displayed apatite formation when subjected to CaCl2treatment after NaOH treatment, forming Ca-deficient calcium titanate at their surfaces after subsequent heat and hot water treatments. The bioactive Ti metal subjected to NaOH and heat treatments has been clinically used as an artificial hip joint material in Japan since 2007. A porous Ti metal subjected to NaOH, HCl and heat treatments has successfully undergone clinical trials as a spinal fusion device.


2012 ◽  
Vol 529-530 ◽  
pp. 436-440 ◽  
Author(s):  
S.B. Cho ◽  
E.M. An ◽  
Sujeong Lee ◽  
H.D. Jang ◽  
Ill Yong Kim ◽  
...  

Osteoconductive bone-repairing materials with mechanical properties analogous to those of human bone can be prepared through the combination of an osteoconductive ceramic filler with an organic polymer. Osteoconduction is archived from apatite formation on substrates. Previously, we reported that novel osteoconductive spherical particles in a binary CaO-SiO2 system were produced through a sol-gel process as ceramic filler for the fabrication of composites. In this study, we fabricated the composites consisting of polyetheretherketone (PEEK) and 30CaO·70SiO2 (CS) spherical particles and evaluated the effects of heat treatment in the range of 320-360 °C on apatite formation of the composites in a simulated body fluid. The prepared composites of PEEK and CS particles form hydroxyapatite on their surfaces in the simulated body fluid. The induction periods of hydroxyapatite on the composites decreased with increasing the amount of CS particles and decreasing the temperature for heat treatment. The apatite formation was affected by exposure of ceramic filler on the polymer matrix.


2006 ◽  
Vol 309-311 ◽  
pp. 411-414 ◽  
Author(s):  
Bang Cheng Yang ◽  
Qi Feng Yu ◽  
Ji Yong Chen ◽  
Xing Dong Zhang

The bioactivity of a composite of titania and hydroxyapatite was studied in vitro in this paper. After the titania ceramics was added 10% HA, it could induce apatite formation in simulated body fluid in 2d, while the pure titania ceramics could not induced apatite formation even after 14d. After the composite of titania and HA was subjected to alkali-heat treatment, it has a faster speed for apatite formation in SBF than the composite without treatment. When the osteoblast was cultured on the materials, the amount of osteoblasts attaching on the composite was more than that on the pure titania ceramics. It has the most osteoblasts cells on the composite subjected to alkali-heat treatment. These results showed that the composite of titania and HA is a bioactive materials, while the alkali-heat treatment could improved the bioactivity of this composite.


2012 ◽  
Vol 529-530 ◽  
pp. 570-573
Author(s):  
Kawashita Masakazu ◽  
N. Matsui ◽  
Toshiki Miyazaki ◽  
Hiroyasu Kanetaka

Sodium hydroxide (NaOH)-, heat- and autoclave-treated Ti metal did not form apatite in simulated body fluid (SBF) within 7 days although certain amounts of sodium (Na) still remained on the Ti metal surface even after the autoclave treatment. When hot water treatment was applied between NaOH and heat treatment, the Ti metal formed apatite within 7 days in SBF. Anatase-type TiO2 was partially precipitated by the NaOH and heat treatment but it was disappeared by the subsequent autoclave treatment. When the hot water treatment was applied between the NaOH and heat treatment, considerable amount of anatase-type TiO2 was formed and it still remained even after the autoclave treatment. The zeta potential of the Ti metal with the hot water treatment was almost zero in SBF. These results indicate that Ti metal can show apatite-forming ability in SBF even after autoclave treatment, when hot water treatment is applied between the NaOH and heat treatment, and that anatase-type TiO2 might play an important role in the apatite formation rather than the amount of Na and/or the zeta potential.


Author(s):  
A. W. West

The influence of the filament microstructure on the critical current density values, Jc, of Nb-Ti multifilamentary superconducting composites has been well documented. However the development of these microstructures during composite processing is still under investigation.During manufacture, the multifilamentary composite is given several heat treatments interspersed in the wire-drawing schedule. Typically, these heat treatments are for 5 to 80 hours at temperatures between 523 and 573K. A short heat treatment of approximately 3 hours at 573K is usually given to the wire at final size. Originally this heat treatment was given to soften the copper matrix, but recent work has shown that it can markedly change both the Jc value and microstructure of the composite.


Sign in / Sign up

Export Citation Format

Share Document