Study on Characteristics of Green Parts of Birch Flour/Polyester Composite by Selective Laser Sintering

2015 ◽  
Vol 667 ◽  
pp. 314-319
Author(s):  
De Jin Zhao ◽  
Yan Ling Guo ◽  
Wen Long Song ◽  
Zhang Hui ◽  
Zhi Xiang Yu

In this paper, the birch flour was the raw material with its particle size less than 100μm and the polyester hot-melt adhesive was used as binder with its particle size less than 60μm. The birch flour was dried using high speed mixer with heating function. The birch flour/polyester composite were prepared using the physical mixing method. The surface of the specimen and fracture surface of specimen were analyzed through the micrographs of scanning electron microscopy. In order to study the characteristics of laser sintering, the preheating temperature of the powder bed of laser sintering machine and the processing parameters of the birch flour/polyester composite were determined using single layer sintering method and empirical method. The tensile, flexural and impact specimens were built in the two scanning laser ways of subarea scan and progressive scan. The testing results show that the mechanical properties using subarea scan method are superior to those of progressive scan method and the mechanical properties of the specimens increase as the laser scan speed decreases. The best mechanical properties of SLS specimens of brich flour/polyester composite powder were obtained with the following parameters: the laser power was 11W, layer scan speed was 1800mm/s; layer thickness was 0.1mm; laser scan spacing was 0.1mm and the average tensile, flexural and impact strength of specimens were 1.35MPa, 3.69Mpa and 0.73KJ/m2 respectively.

Author(s):  
Massimiliano Bonesso ◽  
Pietro Rebesan ◽  
Claudio Gennari ◽  
Simone Mancin ◽  
Razvan Dima ◽  
...  

AbstractOne of the major benefits of the Laser Powder Bed Fusion (LPBF) technology is the possibility of fabrication of complex geometries and features in only one-step of production. In the case of heat exchangers in particular, this is very convenient for the fabrication of conformal cooling channels which can improve the performance of the heat transfer capability. Yet, obtaining dense copper parts printed via LPBF presents two major problems: the high reflectivity of 1 μm (the wavelength of commonly used laser sources) and the high thermal conductivity of copper that limits the maximum local temperature that can be attained. This leads to the formation of porous parts.In this contribution, the influence of the particle size distribution of the powder on the physical and mechanical properties of parts produced via LPBF is studied. Three copper powders lots with different particle size distributions are used in this study. The effect on densification from two laser scan parameters (scan speed and hatching distance) and the influence of contours scans on the lateral surface roughness is reported. Subsequently, samples manufactured with the optimal process parameters are tested for thermal and mechanical properties evaluation.


2016 ◽  
Vol 833 ◽  
pp. 3-10
Author(s):  
Tay Chen Chiang ◽  
Sinin Hamdan ◽  
Mohd Shahril Osman

Every year, the sago processing industry in Sarawak-Mukah had generated huge amount of sago waste after the milling process and scientists have employ the waste into composite material. The fabrication and testing method are based on the Japanese A5908 Industrial Standard. Single-layer particleboards with targeted density of 600kg/m3 were produced from different sizes of sago particles. The mechanical properties of sago waste were investigated to study the feasibility of using this sample as a raw material in particleboard manufacturing. The results of the test demonstrate that samples with different sizes of particles have great influence on the mechanical properties such as Young’s Modulus, Tensile Strength and Impact Strength. The findings show that the performance of the board is affected by the different sizes of sago particles used in the experiment and had proved that sago plants can be used as an alternative raw material in the particleboard manufacturing industry.


2010 ◽  
Vol 43 ◽  
pp. 430-433
Author(s):  
Nai Fei Ren ◽  
Pan Wang ◽  
Yan Luo ◽  
Hui Juan Wu

The dimensional accuracy and mechanics properties of parts made by Selective Laser Sintering depend greatly on the sintering process parameters. The influence of process parameters on warping weight of parts sintered by blends of polyamide (PA12) and high density polyethylene (HDPE) was studied. The relationship between the process parameters and the warping height was presented. The surface morphology of the part and uniformity of powder mixed were analyzed by SEM. The optimum parameters of minimum warping height were obtained: preheat temperature 110°C, scan speed 300mm/s, laser power 21W, thickness of single layer 0.2mm.


2019 ◽  
Vol 21 ◽  
pp. 28-32
Author(s):  
Zdeněk Prošek ◽  
Pavel Tesárek ◽  
Jan Trejbal

This article discusses the possibility of recycling of concrete waste using the high-speed milling method. The resulting of milling is micronize old concrete. Used old concrete was created by crushing of old concrete, which served as a structural concrete for the construction of a supporting column. Two level of milling process was used to recycle old concrete. The main use of waste is the possibility of partial replacement of commonly used binder and microfillers in concrete. For this reason, properties as particle size distribution, dynamic modulus of elasticity, flexural strength and compressive strength were observed. The aim is to replace as much cement as possible while maintaining mechanical properties.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yan Wu ◽  
Yajing Wang ◽  
Feng Yang

In this paper, poplar was used as raw material, sodium chlorite was used to delignify it in acidic environment, and then epoxy resin was vacuum impregnated in the delignified wood template to prepare transparent wood. Moreover, in order to imitate the lamination method of plywood, the multilayer transparent wood was prepared by means of staggered vertical lamination. The purpose of this paper is to study the physical and chemical properties of multilayer transparent wood, and to explore the application potential of multilayer transparent wood as a new material by comparing with single layer transparent wood with the same thickness. The weight of wood components in the transparent wood prepared in this experiment accounts for about 30–45% of the weight of composite materials. Scanning electron microscopy (SEM) measurements, Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) characterization, weight gain measurements, UV transmittance measurements, color difference measurements, water contact angle measurements and mechanical properties measurements were used to study. The results showed that as the thickness of the transparent wood increased, the cracks between the resin and the wood cell wall increased, and the interface showed an uneven state. In the case of the same thickness, the multilayer transparent wood was made by laminating transparent wood sheets, with fewer internal cracks and smooth interfaces. Its light transmittance is better than single layer transparent wood. Moreover, compared with single layer transparent wood with the same thickness, the lightness of multilayer transparent wood decreased, and tended to yellow and red. Due to the removal of lignin, the tensile strength of transparent wood decreased during the preparation process. However, it can be seen from the mechanical strength test that the tensile strength of multilayer transparent wood is much higher than that of single layer transparent wood. To a certain extent, multilayer transparent wood can improve the mechanical strength of transparent wood. To conclude, multilayer transparent wood is a kind of natural transparent material with large thickness, good light transmission and excellent mechanical properties, and it has a good development prospect.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3034
Author(s):  
Aboubaker I. B. Idriss ◽  
Jian Li ◽  
Yangwei Wang ◽  
Yanling Guo ◽  
Elkhawad A. Elfaki ◽  
...  

The range of selective laser sintering (SLS) materials is currently limited, and the available materials are often of high cost. Moreover, the mechanical strength of wood–plastic SLS parts is low, which restricts the application of a SLS technology. A new composite material has been proposed to address these issues, while simultaneously valorizing agricultural and forestry waste. This composite presents several advantages, including reduced pollution associated with waste disposal and reduced CO2 emission with the SLS process in addition to good mechanical strength. In this article, a novel and low-cost Prosopis chilensis/polyethersulfone composite (PCPC) was used as a primary material for SLS. The formability of PCPC with various raw material ratios was investigated via single-layer experiments, while the mechanical properties and dimensional accuracy of the parts produced using the various PCPC ratios were evaluated. Further, the microstructure and particle distribution in the PCPC pieces were examined using scanning electron microscopy. The result showed that the SLS part produced via 10/90 (wt/wt) PCPC exhibited the best mechanical strength and forming quality compared to other ratios and pure polyethersulfone (PES), where bending and tensile strengths of 10.78 and 4.94 MPa were measured. To improve the mechanical strength, post-processing infiltration was used and the PCPC-waxed parts were enhanced to 12.38 MPa and 5.73 MPa for bending and tensile strength.


2020 ◽  
Vol 12 (12) ◽  
pp. 4841
Author(s):  
Maria Teresa Ferrandez-Garcia ◽  
Antonio Ferrandez-Garcia ◽  
Teresa Garcia-Ortuño ◽  
Clara Eugenia Ferrandez-Garcia ◽  
Manuel Ferrandez-Villena

The manufacture of technical materials of mineral and synthetic origin currently used for thermal insulation in buildings consumes a large amount of energy and they are not biodegradable. In order to reduce the environmental problems generated by their manufacture, an increasing amount of research is being carried out on the use of renewable and ecological resources. Consequently, the use of plant fibers and natural adhesives in the development of new thermal insulating products is increasing worldwide. Palm trees were used as a replacement for wood in some traditional constructions in places with scarce wood resources. This paper discusses the use of palm pruning waste in the manufacture of particleboards, using citric acid as a natural binder. Five particle sizes of Washingtonia palm rachis were used as the raw material for manufacturing the boards and the citric acid content was set at 10% by weight, in relation to the weight of the rachis particles. Single-layer agglomerated panels were made, applying a pressure of 2.6 MPa and a temperature of 150 °C for 7 min. Twenty panels were produced and their density, thickness swelling, water absorption, modulus of rupture, internal bonding strength and thermal conductivity properties were studied. Smaller particle size resulted in better mechanical properties. The boards had an average thermal conductivity of 0.084 W/m·K, meaning that these boards could be used for thermal insulation in buildings.


2016 ◽  
Vol 51 (3) ◽  
pp. 239-245 ◽  
Author(s):  
E Ahmed ◽  
AK Das ◽  
MO Hannan ◽  
MI Shams

This study aimed to find out the feasibility of coir pith as a raw material for particleboard production. Considering particle size, an attempt was taken to produce resin bonded coir pith particleboard and binder-less coir pith particleboard as well. The physical and mechanical properties of the board were examined. The particleboard made from medium size particle showed the best performance in aspect of properties. The particleboards made with 16% Melamine Urea Formaldehyde (MUF) had better product quality than binder-less coir pith board. The MOR, MOE, TS and IB were respectively 24.65, 2398, 22.55 and 1.52 N/mm2. Coir pith board may be a sustainable, cheap and durable building and packaging materials and timber substitute.Bangladesh J. Sci. Ind. Res. 51(3), 239-245, 2016


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 956 ◽  
Author(s):  
Zhi Zeng ◽  
Xiaohu Deng ◽  
Jiangmei Cui ◽  
Hai Jiang ◽  
Shuo Yan ◽  
...  

Amorphous polymers are heavily utilized materials in selective laser sintering (SLS) due to their good dimensional accuracy. However, sintered parts of amorphous polymers cannot be used as functional parts owing to their poor forming performance, including their low relative densities and tensile strength. Therefore, post-processing methods are employed to enhance the mechanical properties of amorphous polymers SLS parts without damaging their relatively high dimensional accuracy. In this study, the forming process of selective laser sintering (SLS) and post-processing on polystyrene (PS) was investigated. The orthogonal experiment was designed to obtain the optimal combination of process parameters. The effect of a single process parameter and the laser volumetric energy density (LVED) on dimension accuracy and warpage of the sintered parts were also discussed. In addition, a three-dimensional (3D) thermal model was developed to analyze the temperature fields of single-layer SLS parts and PS powder sintering mechanism. Then, infiltrating with epoxy resin was employed to enhance the mechanical properties of the PS parts. Good resin-infiltrated formulation was obtained based on the mechanical property tests and fractured surface analysis. This research provides guidance for SLS process and post-processing technology in polymers.


Sign in / Sign up

Export Citation Format

Share Document