Resistance of Refractory Cement Composite to Cyclic Temperature Loading

2016 ◽  
Vol 677 ◽  
pp. 23-28 ◽  
Author(s):  
Ondřej Holčapek

The aim of this study was to describe mechanical properties decline and macroscopic changes after cyclic thermal load of refractory slabs. Investigated elements were made from refractory cement composite containing natural basalt aggregate, fine ceramic powder, aluminous cement with high volume of Al2O3, different dosage of basalt fibres, water and plasticizer. Slabs with dimension 300 x 200 x 38 mm were exposed to elevated temperature 600 °C for three hours (temperature gradient 10 °C/min) and cooled to laboratory condition. This loading cycle was repeated six times. Tensile characteristics were investigated by bending test with clear span of supports 200 mm. Maximum force and displacement increased with increasing amount of basalt fibres. Maximum flexural strength of slabs corresponded to material characteristics measured on specimens 40 x 40 x 160 mm. Slabs with 1% of basalt fibres achieved flexural strength 4.8 MPa (after six loading cycles). The highest weight decline took place after the first loading cycle. Successful design of original fibre-cement composite has been approved by cyclic loading of larger dimension specimens.

2018 ◽  
Vol 58 (6) ◽  
pp. 346-354
Author(s):  
Ondřej Holčapek ◽  
Pavel Reiterman ◽  
Petr Konvalinka

The main objective of this article is to present the influence of high temperatures on mechanical properties of advanced refractory cement composite reinforced with carbon fibres. The presented material is suitable for industrial applications and can withstand elevated temperatures up to 1000 °C. The action of high temperatures was investigated on two temperature levels 600 °C and 1000 °C and was compared to reference specimens dried at 105 °C. The carbon fibres with flexural strength of 4100MPa were applied in dosage 0.50 %, 0.75% and 1.00% of the total volume. The second investigated modification was mutual ratio between aluminous cement and fine ceramic powder. The influence of high temperatures was investigated by measuring the bulk density, compressive and flexural strength, dynamic modulus of elasticity and fracture energy; all measured on prismatic specimens 40 × 40 × 160 mm. The workability of fresh mixture was limited by the maximum dosage of carbon fibres in 1% of the total volume. Based on the workability and evaluation of residual mechanical properties after temperature loading, the best was found to be the combination of carbon fibres in dosage of 0.75% by volume.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Pavel Reiterman ◽  
Ondřej Holčapek ◽  
Marcel Jogl ◽  
Petr Konvalinka

Present paper deals with the experimental study of the composition of refractory fiber-reinforced aluminous cement based composites and its response to gradual thermal loading. Basalt fibers were applied in doses of 0.25, 0.5, 1.0, 2.0, and 4.0% in volume. Simultaneously, binder system based on the aluminous cement was modified by fine ground ceramic powder originated from the accurate ceramic blocks production. Ceramic powder was dosed as partial replacement of used cement of 5, 10, 15, 20, and 25%. Influence of composition changes was evaluated by the results of physical and mechanical testing; compressive strength, flexural strength, bulk density, and fracture energy were determined on the different levels of temperature loading. Increased dose of basalt fibers allows reaching expected higher values of fracture energy, but with respect to results of compressive and flexural strength determination as an optimal rate of basalt fibers dose was considered 0.25% in volume. Fine ground ceramic powder application led to extensive increase of residual mechanical parameters just up to replacement of 10%. Higher replacement of aluminous cement reduced final values of bulk density but kept mechanical properties on the level of mixtures without aluminous cement replacement.


2015 ◽  
Vol 824 ◽  
pp. 173-177 ◽  
Author(s):  
Ondřej Holčapek ◽  
Pavel Reiterman ◽  
Marcel Jogl

Following article deals with experimental investigation of elevated temperatures influence on mechanical properties of refractory cement composite, which seems to be very progressive and interesting field of material science. Specimens 40 x 40 x 160 mm3 were exposed to 600 °C and 1000 °C for three hours. Using of aluminous cement, in this case Secar®71 with70 % of Al2O3, means the basic premise for refractory composites. Natural crushed basalt aggregate of two fractions 0-4 mm and 2-5 mm works as filler. Metakaolin MefistoL05 in amount 225 kg/m3 represents the fine filler, commonly used in refractory concrete production. Ceramic fibers or combination of two lengths of basalt fibers significantly improve the flexural characteristics. The goal of this research is to quantified influence of basalt fibers and ceramic fibers on flexural strength, compressive strength and bulk density of cement composite in high temperature conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ondřej Holčapek ◽  
Jaroslava Kot'átková ◽  
Pavel Reiterman

The paper introduces the development process of fiber-reinforced composite with increased resistance to elevated temperatures, which could be additionally increased by the hydrothermal curing. However, production of these composites is extremely energy intensive, and that is why the process of the design reflects environmental aspects by incorporation of waste material—fine ceramic powder applied as cement replacement. Studied composite materials consisted of the basalt aggregate, ceramic fibers applied up to 8% by volume, calcium-aluminous cement (CAC), ceramic powder up to 25% by mass (by 5%) as cement replacement, plasticizer, and water. All studied mixtures were subjected to thermal loading on three thermal levels: 105°C, 600°C, and 1000°C. Experimental assessment was performed in terms of both initial and residual material properties; flow test of fresh mixtures, bulk density, compressive strength, flexural strength, fracture energy, and dynamic modulus of elasticity were investigated to find out an optimal dosage of ceramic fibers. Resulting set of composites containing 4% of ceramic fibers with various modifications by ceramic powder was cured under specific hydrothermal condition and again subjected to elevated temperatures. One of the most valuable benefits of additional hydrothermal curing of the composites lies in the higher residual mechanical properties, what allows successful utilization of cured composite as a thermal barrier in civil engineering. Mixtures containing ceramic powder as cement substitute exhibited after hydrothermal curing increase of residual flexural strength about 35%; on the other hand, pure mixture exhibited increase up to 10% even higher absolute values.


2017 ◽  
Vol 68 (10) ◽  
pp. 2367-2372 ◽  
Author(s):  
Ng Hooi Jun ◽  
Mirabela Georgiana Minciuna ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Tan Soo Jin ◽  
Andrei Victor Sandu ◽  
...  

Manufacturing of Portland cement consists of high volume of natural aggregates which depleted rapidly in today construction field. New substitutable material such as bottom ash replace and target for comparable properties with hydraulic or pozzolanic properties as Portland cement. This study investigates the replacement of different sizes of bottom ash into Portland cement by reducing the content of Portland cement and examined the mechanism between bottom ash (BA) and Portland cement. A cement composite developed by 10% replacement with 1, 7, 14, and 28 days of curing and exhibited excellent mechanical strength on day 28 (34.23 MPa) with 63 mm BA. The porous structure of BA results in lower density as the fineness particles size contains high specific surface area and consume high quantity of water. The morphology, mineralogical, and ternary phase analysis showed that pozzolanic reaction of bottom ash does not alter but complements and integrates the cement hydration process which facilitate effectively the potential of bottom ash to act as construction material.


2021 ◽  
pp. 152808372110003
Author(s):  
M Atta ◽  
A Abu-Sinna ◽  
S Mousa ◽  
HEM Sallam ◽  
AA Abd-Elhady

The bending test is one of the most important tests that demonstrates the advantages of functional gradient (FGM) materials, thanks to the stress gradient across the specimen depth. In this research, the flexural response of functionally graded polymeric composite material (FGM) is investigated both experimentally and numerically. Fabricated by a hand lay-up manufacturing technique, the unidirectional glass fiber reinforced epoxy composite composed of ten layers is used in the present investigation. A 3-D finite element simulation is used to predict the flexural strength based on Hashin’s failure criterion. To produce ten layers of FGM beams with different patterns, the fiber volume fraction ( Vf%) ranges from 10% to 50%. A comparison between FGM beams and conventional composite beams having the same average Vf% is made. The experimental results show that the failure of the FGM beams under three points bending loading (3PB) test is initiated from the tensioned layers, and spread to the upper layer. The spreading is followed by delamination accompanied by shear failures. Finally, the FGM beams fail due to crushing in the compression zone. Furthermore, the delamination failure between the layers has a major effect on the rapidity of the final failure of the FGM beams. The present numerical results show that the gradient pattern of FGM beams is a critical parameter for improving their flexural behavior. Otherwise, Vf% of the outer layers of the FGM beams, i.e. Vf% = 30, 40, or 50%, is responsible for improving their flexural strength.


Cellulose ◽  
2021 ◽  
Vol 28 (6) ◽  
pp. 3631-3645
Author(s):  
K. M. Faridul Hasan ◽  
Péter György Horváth ◽  
Tibor Alpár

AbstractThere is a growing interest in developing cement bonded lignocellulosic fiber (LF) composites with enhanced mechanical performances. This study assessed the possibility of developing composite panels with 12 mm thickness and around 1200 kg/m3 nominal densities from ordinary Portland cements (OPC) and mixed LFs from seven different woody plants found in Hungary. Once the mixed LFs were sieved and found fine (0–0.6 mm) and medium (0.6–0.8 mm) length fibers. The optimum ratio for LF, OPC, water glass (Na2SiO3), and cement stone was found to be 1:3.5:0.7:0.07. The semi-dry process, which is a comparatively cheaper and less labor intensive technology, was used for producing the composites. After 28 days of curing, the composite panels were characterized for mechanical, physical, thermal, and morphological properties. A scanning electron microscopy (SEM) test was conducted to observe the fiber orientation in the matrix before and after the bending test, which showed the clear presence of the fibers in the composites. The FTIR (Fourier transform infrared spectroscopy) was conducted to investigate the presence of chemical compounds of LF in the composite panels. Different physical (water absorption and thickness swelling) characteristics of the composite panels were investigated. Furthermore, mechanical properties (flexural properties and internal bonding strength) of the composite panels were also found to be satisfactory. The flexural modulus and internal bonding strengths of composite panel 2 is higher than other three boards, although the flexural strength is a little lower than composite panel 1. The thermogravimetric analysis and differential thermogravimetry also indicated better thermal stability of composite panels which could be used as potential insulation panel for buildings. Graphic abstract


2021 ◽  
Vol 5 (6) ◽  
pp. 144
Author(s):  
Klaudio Bari ◽  
Thozhuvur Govindaraman Loganathan

The research aim is to investigate the performance of novel enriched mineral fibres (Filava) in polysiloxane SLIRES H62 resin. Specimens were manufactured using a vacuum bagging process and oven cured at 250 °C. Specimens were prepared for flexural testing according to BS EN ISO 14125:1998 to obtain flexural strength, modulus, and elongation. The mechanical strength was compared to similar composites, with the aim of determining composite performance index. The flexural modulus (9.7 GPa), flexural strength (83 MPa), and flexural strain (2.9%) were obtained from a three-point bending test. In addition, the study investigates the thermal properties of the composite using a state-of-art Zwick Roell high temperature tensile rig. The results showed Filava/Polysiloxane Composites had an ultimate tensile strength 400 MPa, Young’s modulus 16 GPa and strain 2.5% at 1000 °C, and no smoke and ash were observed during pyrolysis. Ongoing research is currently taking place to use Filava-H62 in fire-retardant enclosure for lithium-ferro-phosphate Batteries used in electric trucks.


2017 ◽  
Vol 52 (3) ◽  
pp. 395-404
Author(s):  
Xiuqi Lyu ◽  
Jun Takahashi ◽  
Yi Wan ◽  
Isamu Ohsawa

Chopped carbon fiber tape-reinforced thermoplastic material is specifically developed for the high-volume production of lightweight automobiles. With excellent design processability and flexibility, the carbon fiber tape-reinforced thermoplastic material is manufactured by compressing large amounts of randomly oriented, pre-impregnated unidirectional tapes in a plane. Therefore, the carbon fiber tape-reinforced thermoplastic material presents transversely isotropic properties. Transverse shear effect along the thickness direction of carbon fiber tape-reinforced thermoplastic beam has a distinct influence on its flexural deformation. Accordingly, the Timoshenko beam theory combined with vibration frequencies was proposed to determine the set of transverse flexural and shear moduli. Meanwhile, the transverse flexural and shear moduli of carbon fiber tape-reinforced thermoplastic beam were finally determined by fitting all the first seven measured and calculated eigenfrequencies with the least squares criterion. In addition, the suggested thickness to length ratio for the 3-point bending test and Euler–Bernoulli model was given.


Sign in / Sign up

Export Citation Format

Share Document