Experimental Study on Quadruped Wheel Robot for Wheat Precision Seeding

2016 ◽  
Vol 693 ◽  
pp. 1651-1657 ◽  
Author(s):  
Hai Bo Lin ◽  
Chui Jie Yi ◽  
Zun Min Liu

The wheat precision seeding technology provided an advanced agricultural protection for the high yield of wheat. But the lack of an effective agricultural machine made this technology difficult to apply widely. In this paper a quadruped wheel robot to achieve the wheat precision seeding technology was designed. And experimental study was taken under different operating conditions. Because of multiple effort factors, a quadratic orthogonal rotation combination design method was applied in the experiments, and identifying the main factors by analysis. Then the field test was carried out according to the main factors. The experiment results showed that the qualified rates of seeding exceed 93% in different sowing speed. That reached the agronomic requirements of wheat precision seeding.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Lin Haibo ◽  
Dong Shuliang ◽  
Liu Zunmin ◽  
Yi Chuijie

The wheat precision seeding technology provided an advanced agricultural support for the high yield of wheat. But the lack of effective agricultural machine made this technique difficult to apply widely. In this paper a wheel mobile robot to achieve the wheat precision seeding technology was designed. The kinematic model of the robot was built and simulated. And experimental study was taken under different operating conditions. Because of multiple effort factors, a quadratic orthogonal rotation combination design method was applied in the experiments, identifying the main factors by analysis. Then the field test was carried out according to the main factors. The experiment results showed that the qualified rates of seeding exceed 93% in different sowing speed. That reached the agronomic requirements of wheat precision seeding.


Author(s):  
Y. Chikahiro ◽  
I. Ario ◽  
M. Nakazawa ◽  
S. Ono ◽  
J. Holnicki-Szulc ◽  
...  

Author(s):  
T. S. Sultanmagomedov ◽  
◽  
R. N. Bakhtizin ◽  
S. M. Sultanmagomedov ◽  
T. M. Halikov ◽  
...  

Study is due to the possibility of loss of stability of the pipeline in the process of pumping a product with a positive operating temperature and the formation of thawing halos. The article presents the ways of solving the thermomechanical problem of pipeline displacement due to thawing. The rate of formation of a thawing halo is investigated depending on the initial temperatures of the soil and the pumped product. The developed monitoring system makes it possible to study the rate of occurrence of thawing halos in the process of pumping the product. An experimental study on the formation of thawing halos around the pipeline was carried out on an experimental model. A thermophysical comparative calculation of temperatures around the pipeline on a model by the finite element method has been carried out. Keywords: underground pipeline; permafrost; thawing halo; monitoring; operating conditions; stress–strain state.


2010 ◽  
Vol 135 ◽  
pp. 149-153 ◽  
Author(s):  
Wen Hui Li ◽  
Sheng Qiang Yang ◽  
Xiu Hong Li

For the precise hole surface, the burr severely affects products’ performance. Considering the specific conditions of the precise hole surface finishing, a new method of two-phase compulsive circulation flows finishing is brought up. Nozzle number, nozzle position, liquid flow, etc. are main factors, which would directly influence finishing effect and efficiency. Affecting rules of main factors are studied by experiments and numerical simulation, which provide basis for thorough research.


Author(s):  
J. Paulon ◽  
C. Fradin ◽  
J. Poulain

Industrial pumps are generally used in a wide range of operating conditions from almost zero mass flow to mass flows larger than the design value. It has been often noted that the head-mass flow characteristic, at constant speed, presents a negative bump as the mass flow is somewhat smaller than the design mass flows. Flow and mechanical instabilities appear, which are unsafe for the facility. An experimental study has been undertaken in order to analyze and if possible to palliate these difficulties. A detailed flow analyzis has shown strong three dimensional effects and flow separations. From this better knowledge of the flow field, a particular device was designed and a strong attenuation of the negative bump was obtained.


2020 ◽  
Vol 12 (1) ◽  
pp. 21
Author(s):  
Hasbunallah AS ◽  
Ahmad Rum Bismar

The aim of this experimental study was todetermine the effect of all teaching methods, part, mixed and motivation result learning toward of flat service skill courts tennis. Learning motivation is divided into two parts, namely high andlow.This research was conducted at Faculty of Sport ScienceState University of Macassar,the academic year 2014/2015. Experimental using factorial design method 2x3. The sample consisted of 60 students were divided into 6 groups, each consisting of 10 students. Data analysis technique is a two-way analysis of variance (ANOVA) followed by Tukey's test at a significance level of α= 0.05. The results of this study indicate that ( (1) overall teaching methods higher effect of the part teacing methods on learning outcomes flat tennis service skills (2) overall teaching methods lower effect of the part teacing methods on learning outcomes flat tennis service skills, (3) overall teaching methods lower effect of the part teacing methods on learning outcomes flat tennis service skills,(4) there is interaction between the overall teaching methods, part teaching methods and combined teaching methods and learning motivation outcomes flat tennis service skills,(5) overall teaching methods higher effect of the part teacing methods on learning outcomes flat tennis service skillsusing a high learning motivation, (6) overall teaching methods lower effect of the part teacing methods on learning outcomes flat tennis service skillsusing a high learning motivation, (7) part teaching methods lower effect of the combined teacing methods on learning outcomes flat tennis service skillsusing a high learning motivation, (8) overall teaching methods higher effect of the part teacing methods on learning outcomes flat tennis service skillsusing a low learning motivation, (9) overall teaching methods lower effect of the part teacing methods on learning outcomes flat tennis service skillsusing a low learning motivation, (10) part teaching methods lower effect of the combined teacing methods on learning outcomes flat tennis service skillsusing a low learning motivation.


Author(s):  
Tao Chen ◽  
Yangjun Zhang ◽  
Xinqian Zheng ◽  
Weilin Zhuge

Turbocharger compressor design is a major challenge for performance improvement of turbocharged internal combustion engines. This paper presents a multi-point design methodology for turbocharger centrifugal compressors. In this approach, several design operating condition points of turbocharger compressor are considered according to total engine system requirements, instead of one single operating point for traditional design method. Different compressor geometric parameters are selected and investigated at multi-point operating conditions for the flow-solutions of different design objectives. The method has been applied with success to a small centrifugal compressor design of a turbocharged gasoline engine. The results show that the consideration of several operating points is essential to improve the aerodynamic behavior for the whole working range. The isentropic efficiency has been increased by more than 5% at part-load conditions while maintaining the pressure ratio and flow range at full-load conditions of the gasoline engine.


Author(s):  
Michael A. Vaudrey ◽  
William R. Saunders ◽  
Bryan Eisenhower

Feedback control system design, for general single-in-single-out (SISO) applications, requires accurate knowledge of the loop transfer function. Active combustion control design is usually implemented using such SISO architectures, but is quite challenging because the thermoacoustic response results from a relatively unknown, self-excited system and nonlinear processes that must be understood before learning the gain/phase relationship of the system precisely at the instability frequency. However, recent experiments have shown that it is possible to obtain accurate measurements of the relevant loop transfer (frequency response) functions at frequencies adjacent to the instability frequency. Using a simple tube combustor, operating with a premixed, gaseous, burner-stabilized flame, the loop frequency response measurements have been used to develop a methodology that leads to ‘test-based predictions’ of the absolute phase settings and ‘best’ gain settings for a proportional, phase-shifting controller commanding an acoustic actuator in the combustor. The contributions of this methodology are twofold. First, it means that a manual search for the required phase setting of the controller is no longer necessary. In fact, this technique allows the absolute value of controller phase to be determined without running the controller. To the authors’ knowledge, this has not been previously reported in the literature. In addition, the ‘best’ gain setting of the controller, based on this new design approach, can be defined as one that eliminates or reduces the limit cycle amplitude as much as possible within the constraint of avoiding generation of any controller-induced instabilities. (This refers to the generation of ‘new’ peaks in the controlled acoustic pressure spectrum.) It is shown that this tradeoff in limit cycle suppression and avoidance of controller-induced instabilities is a manifestation of the well-known tradeoff in the sensitivity/complementary sensitivity function for feedback control solutions. The focus of this article is limited to the presentation of the design method and does not discuss the detailed nonlinear phenomena that must be understood to determine the optimal gain/phase settings at the limit cycle frequency for a real (versus theoretical) combustor system. A companion paper describes how the proposed design method can be used to generate an AI controller that maintains stabilizing control for a range of changing operating conditions.


Sign in / Sign up

Export Citation Format

Share Document