Effect of Microstructure of Welded Joints HG785D on Impact Toughness

2016 ◽  
Vol 693 ◽  
pp. 740-746
Author(s):  
Qiang Zhang ◽  
Jian Min Han ◽  
Zhi Yong Yang ◽  
Jun Qiang Wang

The microstructure and impact toughness of joints of HG785D high strength steel welded by metal active gas shielded arc welding (80%Ar+20%CO2) was observed and analyzed. The result showed that the microstructure of weld seam was mainly composed of acicular ferrite, the impact energy of which was better. While the microstructure of HAZ with large size bainite and M-A island. Using the method of EBSD, it's also found that the effective grain size of weld seam was similar with fine grain HAZ. However the proportion of high-angle grain boundary in weld seam was much larger than that of HAZ. As a result, it could arrest propagating cracks and enhance the toughness.

2006 ◽  
Vol 306-308 ◽  
pp. 947-952
Author(s):  
Ji Tai Niu ◽  
Wei Feng Huang ◽  
Jing Jun Xu ◽  
Yong Liang Guo

In this paper, a type of the high-strength abrasion-resistant steel-NM360 has been studied with the aid of the modern physical simulation technology to solve the problem of its poor weldability. In the experiment, the welding thermal cycles under different cooling conditions with the peak heating temperature of 1320oC were simulated via the Gleeble-1500D thermal/mechanical simulator. The SH-CCT diagram of NM360 has been established by investigating the microstructure transformation course and the hardness of the welded heat-affected zone (HAZ) near fusion line during different cooling process. Moreover, the impact toughness and fracture in HAZ with different cooling rate have been studied. The established SH-CCT diagram and impact toughness in HAZ provide the referential experimental basis for selecting proper welding parameters. At last, the welding parameters for NM360 steel are determined with the aid of nomography of carbon dioxide gas shielded arc welding and empirical formula.


2013 ◽  
Vol 634-638 ◽  
pp. 2899-2903 ◽  
Author(s):  
Mei Zhang ◽  
Qing Shan Li ◽  
Chao Bin Huang ◽  
Ru Yi Wu ◽  
Ren Yu Fu ◽  
...  

Complex phase steel CP 800, a kind of advanced high strength steel (AHSS), exhibited quite high carbon equivalent (CE) which was a detrimental factor for weldability of steels. Thus the weldability of CP 800 steels containing (in wt%) 0.06C-0.45Si-1.71Mn-0.11Ti was extensively studied. Mechanical properties and impact toughness of butt joint, the welding crack susceptibility of weld and heat-affected-zone (HAZ) for tee joint, Control Thermal Severity (CTS) welded joint, and 60°Y-groove butt joint were inspected after gas shielded arc welding tests. The impact toughness was larger than 27J either at room temperature (RT) or at -20°C, indicating good impact toughness of the weld of the steel. In addition, welding crack susceptibility tests revealed that the weldments were free of surface crack and other imperfection, showed fairly good weldability. In application, the longitudinal control arm of automobile made of this steel exhibited excellent fatigue and durability performance.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2981
Author(s):  
Yue Zhang ◽  
Jun Xiao ◽  
Wei Liu ◽  
Aimin Zhao

The effect of peak temperature (TP) on the microstructure and impact toughness of the welding heat-affected zone (HAZ) of Q690 high-strength bridge steel was studied using a Gleeble-3500 thermal simulation testing machine. The results show that the microstructure of the inter critical heat-affected zone (ICHAZ) was ferrite and bainite. The microstructure of fine grain heat-affected zone (FGHAZ) and coarse grain heat-affected zone (CGHAZ) was lath bainite (LB) LB, lath martensite (LM), and granular bainite (GB), but the microstructure of FGHAZ was finer. With the increase in peak temperature, the content of LB and GB decreased, the content of LM increased, and the lath bundles of LM and LB gradually became coarser. With the increase in peak temperature, the grain size of the original austenite increased significantly, and the impact toughness decreased significantly. When the peak temperature was 800 °C, the toughness was the best. For CGHAZ, the peak temperature should be less than 1200 °C to avoid excessive growth of grain and reduction of mechanical property.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1566
Author(s):  
Anastasiya Dolzhenko ◽  
Rustam Kaibyshev ◽  
Andrey Belyakov

The microstructural mechanisms providing delamination toughness in high-strength low-alloyed steels are briefly reviewed. Thermo-mechanical processing methods improving both the strength and impact toughness are described, with a close relation to the microstructures and textures developed. The effect of processing conditions on the microstructure evolution in steels with different carbon content is discussed. Particular attention is paid to tempforming treatment, which has been recently introduced as a promising processing method for high-strength low-alloyed steel semi-products with beneficial combination of strength and impact toughness. Tempforming consists of large strain warm rolling following tempering. In contrast to ausforming, the steels subjected to tempforming may exhibit an unusual increase in the impact toughness with a decrease in test temperature below room temperature. This phenomenon is attributed to the notch blunting owing to easy splitting (delamination) crosswise to the principle crack propagation. The relationships between the crack propagation mode, the delamination fracture, and the load-displacement curve are presented and discussed. Further perspectives of tempforming applications and promising research directions are outlined.


2013 ◽  
Vol 762 ◽  
pp. 551-555 ◽  
Author(s):  
Marek Stanislaw Węglowski ◽  
Marian Zeman ◽  
Miroslaw Lomozik

In the present study, the investigation of weldability of new ultra-high strength - Weldox 1300 steel has been presented. The thermal simulated samples were used to investigate the effect of welding cooling time t8/5 on the microstructure and mechanical properties of the heat affected zone (HAZ). In the frame of these investigation the microstructure was studied by the light (LM) and transmission electron microscopies (TEM). It has been shown that the microstructure of the Weldox 1300 steel is composed of tempered martensite, and inside the laths the minor precipitations mainly V(CN) and molybdenum carbide Mo2C were observed. Mechanical properties of parent material were analysed by the tensile, impact and hardness tests. In details the influence of cooling time in the range of 2,5 - 300 s. on hardness, impact toughness and microstructure of simulated HAZ was studied by using welding thermal simulation test. The results show that the impact toughness and hardness decrease with the increase of t8/5 under the condition of a single thermal cycle in simulated HAZ. The continuous cooling transformation diagrams (CCT-W for welding conditions) of Weldox 1300 steel for welding purposes was also elaborated. The steel Weldox 1300 for cooling time in the range of 2,5 - 4 s showed martensite microstructure, for time from 4 s to 60 s mixture of martensite and bainite, and for longer cooling time mixture of ferrite, bainite and martensite. The results indicated that the weldability of Weldox 1300 steel is limited and to avoid the cold cracking the preheating procedure or medium net linear heat input should be used.


Author(s):  
Mehdi Soltan Ali Nezhad ◽  
Sadegh Ghazvinian ◽  
Mahmoud Amirsalehi ◽  
Amir Momeni

Abstract Three steels were designed based on HSLA-100 with additional levels of Mn, Ni, Cr and Cu. The steels were prepared by controlled rolling and tempered at temperatures in range of 550–700°C. The continuous cooling time curves were shifted to longer times and lower temperatures with the increased tendency for the formation of martensite at lower cooling rates. The microstructures revealed that controlled rolling results in austenite with uniform fine grain structure. The steel with the highest amount of Mn showed the greatest strength after tempering at 750 °C. The top strength was attributed to the formation of Cu-rich particles. The steel with 1.03 wt.% Mn, tempered at 650 °C exhibited the best Charpy impact toughness at –85°C. On the other hand, the steel that contained 2.11 wt.% Mn and tempered at 700 °C showed the highest yield strength of 1 097.5 MPa (∼159 ksi) and an impact toughness of 41.6 J at –85°C.


2018 ◽  
Vol 937 ◽  
pp. 61-67
Author(s):  
Yu Jie Li ◽  
Jin Wei Lei ◽  
Xuan Wei Lei ◽  
Oleksandr Hress ◽  
Kai Ming Wu

Utilizing submerged arc welding under heat input 50 kJ/cm on 60 mm thick marine engineering structure plate F550, the effect of preheating and post welding heat treatment on the microstructure and impact toughness of coarse-grained heat-affected zone (CGHAZ) has been investigated. The original microstructure of the steel plate is tempered martensite. The yield and tensile strength is 610 and 660 MPa, respectively. The impact absorbed energy at low temperature (-60 °C) at transverse direction reaches about 230~270 J. Welding results show that the preheating at 100 °C did not have obvious influence on the microstructure and toughness; whereas the tempering at 600 °C for 2.5 h after welding could significantly reduce the amount of M-A components in the coarse-grained heat-affected zone and thus improved the low temperature impact toughness.


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Misbahu A Hayatu ◽  
Emmanuel T Dauda ◽  
Ola Aponbiede ◽  
Kamilu A Bello ◽  
Umma Abdullahi

There is a growing interest for novel materials of dissimilar metals due to higher requirements needed for some critical engineering applications. In this research, different dissimilar weld joints of high strength low alloy (HSLA) and 316 austenitic stainless steel grades were successfully produced using shielded metal arc welding (SMAW) process with 316L-16 and E7018 electrodes. Five variations of welding currents were employed within the specified range of each electrode. Other welding parameters such as heat inputs, welding speeds, weld sizes, arc voltages and time of welding were also varied. Specimens for different weld joint samples were subjected to microstructural studies using optical and scanning electron microscopes. The impact toughness test was also conducted on the samples using Izod impact testing machine. The analysis of the weld microstructures indicated the presence of type A and AF solidification patterns of austenitic stainless steels. The results further showed that the weld joints consolidated with E7018 electrode presented comparatively superior impact energy to the weldments fabricated by 316L-16 electrode. The optimum impact energy of E7018-weld joints (51J) was attained at higher welding heat inputs while that of 316L-16-weld joints (35J) was achieved at lower welding heat inputs, which are necessary requirements for the two electrodes used in the experiment. Hence, the dissimilar weld joints investigated could meet requirement for engineering application in offshore and other critical environments.Keywords—Dissimilar metal weld, heat input, impact toughness, microstructures


2019 ◽  
Vol 944 ◽  
pp. 821-827
Author(s):  
Jun Jie Ren ◽  
Wei Feng Ma ◽  
Xue Liang He ◽  
An Qi Chen ◽  
Jin Heng Luo ◽  
...  

Weld samples imitating the inservice girth welds in station (L245 straight pipe jointed to WPHY-70 tee joint and L415MB straight pipe jointed to WPHY-80 tee joint) were prepared. Tensile, bending, impact toughness and hardness of the joints were investigated. Results show that under tensile or bending load, failure occurred from the side with lower grade and smaller wall thickness. Relatived to the lower grade side, the weld seam is strong match. Significant change of impact toughness can be found in weld seam center and the heat affected zones (HAZ). The impact energy of seam center is the lowest in the weld joint. The impact energy show a trend of increase from seam center to base metal. In HAZ zone, impact toughness of the fusion line is the lowest. Impact toughness of higher grade side is higher than that of the lower grade side. Hardness of positions in HAZ zones are different distinctly. From coarse grained region to fine grained region, the hardness decrease. For the in-station girth welds jointed with different materials, lower grade and samller wall thickness side should be intensive monitored.


Sign in / Sign up

Export Citation Format

Share Document