A MIM Route for Producing Ti6Al4V-TiC Composites

2016 ◽  
Vol 704 ◽  
pp. 139-147 ◽  
Author(s):  
Roger Pelletier ◽  
Louis Philippe Lefebvre ◽  
Eric Baril

Discontinuous reinforced titanium matrix composites have generated significant interest due to their compelling properties such as their specific strength and wear resistance at room and elevated temperatures. For these reasons, these materials have been considered in various applications such as automotive (valve components), aerospace (engine components) and medical devices (implants). Metal injection molding (MIM) has proven to be an efficient near net-shape technology suitable for high volume manufacturing of parts having complex geometries. The MIM technology is particularly attractive for producing composites as the metallic matrix does not go through the liquid state. This helps minimizing the segregation of the hard particles. MIM also reduces the needs for machining. However, the production of titanium components with the MIM process has its own challenges and limitations, such as presence of porosities and coarser microstructures compared to wrought products. The present work introduces the results obtained during the development of a MIM route for producing Ti6Al4V-5wt%TiC composites. The feedstock developed is wax-based and incorporates a pre-alloyed metal powder. The microstructure, mechanical properties at room and elevated temperatures, the wear resistance and the thermal diffusivity of the composites have been characterised. Properties are compared with those of a Ti6Al4V MIM material produced with the same feedstock and process but without TiC as well as with those of wrought Ti6Al4V reported in the literature. The presence of a small amount of TiC promotes densification and grain size refinement and affects the surface finish of the sintered components. Tensile properties of the composites are comparable or better than those of wrought Ti6Al4V (ASTM F1472). Improved mechanical properties compared to unreinforced material are associated to the higher density, finer grain size as well as solution strengthening of the titanium matrix.

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1473
Author(s):  
Jun Zhao ◽  
Kang Wang ◽  
Shuaibin Wang ◽  
Zike Wang ◽  
Zhaohui Yang ◽  
...  

This paper presents results from experimental work on mechanical properties of geopolymer concrete, mortar and paste prepared using fly ash and blended slag. Compressive strength, splitting tensile strength and flexural strength tests were conducted on large sets of geopolymer and ordinary concrete, mortar and paste after exposure to elevated temperatures. From Thermogravimetric analyzer (TGA), X-ray diffraction (XRD), Scanning electron microscope (SEM) test results, the geopolymer exhibits excellent resistance to elevated temperature. Compressive strengths of C30, C40 and C50 geopolymer concrete, mortar and paste show incremental improvement then followed by a gradual reduction, and finally reach a relatively consistent value with an increase in exposure temperature. The higher slag content in the geopolymer reduces residual strength and the lower exposure temperature corresponding to peak residual strength. Resistance to elevated temperature of C40 geopolymer concrete, mortar and paste is better than that of ordinary concrete, mortar and paste at the same grade. XRD, TGA and SEM analysis suggests that the heat resistance of C–S–H produced using slag is lower than that of sulphoaluminate gel (quartz and mullite, etc.) produced using fly ash. This facilitates degradation of C30, C40 and C50 geopolymer after exposure to elevated temperatures.


2014 ◽  
Vol 1004-1005 ◽  
pp. 158-162 ◽  
Author(s):  
Xiang Ting Hong ◽  
Fu Chen ◽  
Fei Chen ◽  
Wang Yu ◽  
Bo Rong Sang ◽  
...  

Microstructures of metal micro parts after microforming at elevated temperatures must be evaluated due to mechanical properties depend on average grain size. In this work, the effects of specimen diameter on the microstructure and microhardness of a hot-extruded AZ31B magnesium alloy were studied. Obvious size effect on microstructure and microhardness of the alloy could be observed. The size effects could be explained by strain distribution and dislocation density differences between the two kinds of specimens.


2012 ◽  
Vol 706-709 ◽  
pp. 1823-1828 ◽  
Author(s):  
J.A. del Valle ◽  
P. Rey ◽  
D. Gesto ◽  
D. Verdera ◽  
Oscar A. Ruano

The effect of friction stir processing (FSP), on the microstructure and mechanical properties of a magnesium alloy AZ61 has been analyzed. This is a widely used wrought magnesium alloy provided in the form of rolled and annealed sheets with a grain size of 45 μm. The FSP was performed with an adequate cooling device in order to increase the heat extraction and reduce the processing temperature. The final microstructure showed a noticeable grain size refinement down to values close to 1.8 μm and an important change in texture. The change in texture favors basal slip during tensile testing leading to an increase of ductility and a decrease in yield stress. The stability of the grain size and the creep behavior at high temperatures were investigated. The optimum conditions for superplastic forming were determined; however, the presence of a large amount of cavities precludes the achievement of high superplastic elongations. Additionally, these results are compared with those obtained by severe hot rolling.


2006 ◽  
Vol 200 (20-21) ◽  
pp. 5738-5742 ◽  
Author(s):  
G.S. Fox-Rabinovich ◽  
B.D. Beake ◽  
J.L. Endrino ◽  
S.C. Veldhuis ◽  
R. Parkinson ◽  
...  

1996 ◽  
Vol 460 ◽  
Author(s):  
C. T. Liu ◽  
P. J. Maziasz ◽  
J. L. Wright

ABSTRACTThe objective of this study is to identify key microstructural parameters which control the mechanical properties of two-phase γ-TiAl alloys with lamellar structures. TiAl alloys with the base composition of Ti-47Al-2Cr-2Nb (at. %) were prepared by arc melting and drop casting, followed by hot extrusion at temperatures above the oc-transus temperature, Tα. The hot extruded materials were then heat treated at various temperatures above and below Tα in order to control microstructural features in these lamellar structures. The mechanical properties of these alloys were determined by tensile testing at temperatures to 1000° C. The tensile elongation at room temperature is strongly dependent on grain size, showing an increase in ductility with decreasing grain size. The strength at room and elevated temperatures is sensitive to interlamellar spacing, showing an increase in strength with decreasing lamellar spacing. Hall-Petch relationships hold well for the yield strength at room and elevated temperatures and for the tensile elongation at room temperature. Tensile elongations of about 5% and yield strengths around 900 MPa are achieved by controlling both colony size and interlamellar spacing. The mechanical properties of the TiAl alloys with controlled lamellar structures produced directly by hot extrusion are much superior to those produced by conventional thermomechanical treatments.


2007 ◽  
Vol 561-565 ◽  
pp. 869-872 ◽  
Author(s):  
Małgorzata Lewandowska ◽  
Kinga Wawer

Hydrostatic extrusion (HE) as a method of metals forming is known for about 100 years. Recently, it has been utilized as an efficient way of grain size refinement down to nanometer scale. In the case of engineering metals, HE processing alters not only grain size but also second phase particles such as intermetallic inclusions and precipitates. During HE processing, these particles significantly change their size, shape and spatial distribution. These changes are accompanied by improvement in properties of processed metals such as fatigue and fracture toughness. In the present work, changes of second phase particles induced by HE are described in a quantitative way for aluminium alloys. Their impact on mechanical properties is also discussed.


2020 ◽  
Vol 321 ◽  
pp. 03018
Author(s):  
Amine HATTAL ◽  
Madjid DJEMAI ◽  
Jean Jacques FOUCHET ◽  
Thierry CHAUVEAU ◽  
Brigitte BACROIX ◽  
...  

Additive manufactured Ti6Al4V reinforced with nano yttria-zirconia (nYSZ) parts were fabricated using selective laser melting technology (SLM). The as-received Ti6Al4V powder and two powder mixtures of Ti6Al4V mixed with several nYSZ contents (1wt% and 2.5wt%) were prepared and then SLM processed. Parts were further subjected to a stress relief heat treatment. Besides, hot isostatic pressure (HIP) was used in order to eliminate residual porosities. The pycnometer-based technique was used to measure the mass density. XRD and EBSD analysis were performed to investigate the influence of nYSZ additions on the microstructure and subsequent mechanical properties via microhardness and compression tests. It was found that addition of nYSZ increases the density of the reinforced parts and produces a fine α martensite phase. Besides, the grain size was refined compared to that of heat treated Ti6Al4V. As a consequence, a significant increase in both the hardness and the compressive strength for the reinforced Ti6Al4V were obtained while the elongation to failure was kept. These improved mechanical properties are discussed in relation to the effect of nYSZ addition, which includes latice distortions and strengthening from grain size refinement and/or α formation.


2020 ◽  
pp. 096739112098276
Author(s):  
Bilal Kursuncu ◽  
Azmi Erdogan ◽  
M Sabri Gok ◽  
Bilal Demirel

In this study, the change of mechanical properties by adding iron scales of different sizes into polypropylene (PP) was investigated. The iron scale was obtained from a steel production plant and adjusted to 30, 50, 90, 120, and 150 µm grain sizes. These iron scales were then added to the polymer material at a rate of 5% by weight. Wear and tensile strength tests were applied to the samples, which were formed in two different types. According to the results obtained, the wear and tensile strength of polymer material in all grain sizes were improved with an added iron scale. It was observed that the wear resistance of the composite material formed with the addition of fine-grained reinforcing element was the highest. Although grain size increased with increasing tensile strength, wear resistance did not increase. Besides, the friction coefficient was measured to be lower at increasing load. While the effective wear mechanism in pure polymer material is plastic deformation, this wear mechanism has not been found in composite materials with different grain sizes. In this study, it has been shown that iron scales have a positive effect on the mechanical properties of polymer composites.


Sign in / Sign up

Export Citation Format

Share Document