Influence of Geometrical Shapes and Sheet Thicknesses on the Dimensional Accuracy of Single and Assembled Parts

2016 ◽  
Vol 716 ◽  
pp. 923-930 ◽  
Author(s):  
Tobias Konrad ◽  
Steffen Schöllhammer ◽  
Karl Roll ◽  
Marion Merklein

Based on elastic stress and strain states after forming and joining processes, single and assembled parts show deviations regarding their dimensional accuracy. Therefore an analysis of selected influencing factors and their influence on the dimensional accuracy of assembled parts is performed in this paper. In this article a novel approach is presented that characterizes the impact of three geometrical shapes (convex/concave/straight) and different sheet thicknesses on the dimensional accuracy along a linked forming and joining process chain. The process chain consists of a deep drawing and a clinching process. Depending on sheet thickness, material and geometrical shape, the dimensional accuracy of single parts and joined assemblies varies. For the single parts the geometry of the specimen S-rail is used. Several types of assemblies are used for the proposed approach combining this specimen with a plane sheet or a second S-rail. The FEM-tools LS-DYNA and Abaqus, are used to demonstrate this approach. Simulations and experiments with aluminum alloy 6014, mild steel CR3 and sheet thicknesses of 0.7, 1.0 and 2.0 mm are conducted for single and assembled parts. In summary, a significant improvement of the dimensional accuracy of an S-rail assembly is demonstrated using two non-dimensional accurate single parts. Future work will be to analyze frequently occurring part segmentations for the joining technologies and to optimize material mix and sheet thicknesses in order to improve deviations of the assembly to the nominal CAD geometry.

Author(s):  
Tareq Mohammed Dhannoon AL Taie

The BRICS countries have a historical aspiration for global leadership, especially Russia and China, and other countries trying to have a position in the pyramid of international powers in the twenty-first century, especially Brazil, India and South Africa, they worked to unify their efforts, in order to achieve integration in the strategic action, activate its role in International affairs, ending American domination , and restructuring an international system that have an active role in its interactions.       The research hypothesis is based on the idea that the BRICS group, despite the nature of its economic composition and its long-term goals, but its political influence as a bloc, is greater than the proportion of its economic influence in restructuring the new international order. The BRICS group has the capabilities to reshape the international order, but disputes among some of its members represent a challenge to its future work. Its goals will not be achieved without teamwork. Third world countries, especially those that reject unipolarism, have regarded one of the pillars supporting multi-polarity, aiming of giving them freedom of movement in international relations. The ultimate goal of the BRICS is a political nature, as economic mechanisms are used to achieve political goals.


Author(s):  
Dinh-Thuan Do ◽  
Minh-Sang V. Nguyen

Objective: In this paper, Decode-and-Forward (DF) mode is deployed in the Relay Selection (RS) scheme to provide better performance in cooperative downlink Non-orthogonal Multiple Access (NOMA) networks. In particular, evaluation regarding the impact of the number of multiple relays on outage performance is presented. Methods: As main parameter affecting cooperative NOMA performance, we consider the scenario of the fixed power allocations and the varying number of relays. In addition, the expressions of outage probabilities are the main metric to examine separated NOMA users. By matching related results between simulation and analytical methods, the exactness of derived formula can be verified. Results: The intuitive main results show that in such cooperative NOMA networks, the higher the number of relays equipped, the better the system performance can be achieved. Conclusion: DF mode is confirmed as a reasonable selection scheme to improve the transmission quality in NOMA. In future work, we will introduce new relay selections to achieve improved performance.


2021 ◽  
Author(s):  
Alexander Subbotin ◽  
Samin Aref

AbstractWe study international mobility in academia, with a focus on the migration of published researchers to and from Russia. Using an exhaustive set of over 2.4 million Scopus publications, we analyze all researchers who have published with a Russian affiliation address in Scopus-indexed sources in 1996–2020. The migration of researchers is observed through the changes in their affiliation addresses, which altered their mode countries of affiliation across different years. While only 5.2% of these researchers were internationally mobile, they accounted for a substantial proportion of citations. Our estimates of net migration rates indicate that while Russia was a donor country in the late 1990s and early 2000s, it has experienced a relatively balanced circulation of researchers in more recent years. These findings suggest that the current trends in scholarly migration in Russia could be better framed as brain circulation, rather than as brain drain. Overall, researchers emigrating from Russia outnumbered and outperformed researchers immigrating to Russia. Our analysis on the subject categories of publication venues shows that in the past 25 years, Russia has, overall, suffered a net loss in most disciplines, and most notably in the five disciplines of neuroscience, decision sciences, mathematics, biochemistry, and pharmacology. We demonstrate the robustness of our main findings under random exclusion of data and changes in numeric parameters. Our substantive results shed light on new aspects of international mobility in academia, and on the impact of this mobility on a national science system, which have direct implications for policy development. Methodologically, our novel approach to handling big data can be adopted as a framework of analysis for studying scholarly migration in other countries.


2021 ◽  
pp. 216769682110251
Author(s):  
Samantha G. Farris ◽  
Mindy M. Kibbey ◽  
Erick J. Fedorenko ◽  
Angelo M. DiBello

The psychological effect of the pandemic and measures taken in response to control viral spread are not yet well understood in university students; in-depth qualitative analysis can provide nuanced information about the young adult distress experience. Undergraduate students ( N = 624) in an early US outbreak “hotspot” completed an online narrative writing about the impact and distress experienced due to the COVID-19 pandemic. Data were collected April-May 2020. A random selection of 50 cases were sampled for thematic analysis. Nine themes were identified: viral outbreak distress, fear of virus contraction/transmission, proximity to virus, dissatisfaction with public response, physical distancing distress, social distancing distress, academic and school-related distress, disruptive changes in health behavior and routines, financial strain and unemployment, worsening of pre-existing mental health problems, and social referencing that minimizes distress. Future work is needed to understand the persistence of the distress, in addition to developing methods for assessment, monitoring, and mitigation of the distress.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 758
Author(s):  
Cibi Pranav ◽  
Minh-Tan Do ◽  
Yi-Chang Tsai

High Friction Surfaces (HFS) are applied to increase friction capacity on critical roadway sections, such as horizontal curves. HFS friction deterioration on these sections is a safety concern. This study deals with characterization of the aggregate loss, one of the main failure mechanisms of HFS, using texture parameters to study its relationship with friction. Tests are conducted on selected HFS spots with different aggregate loss severity levels at the National Center for Asphalt Technology (NCAT) Test Track. Friction tests are performed using a Dynamic Friction Tester (DFT). The surface texture is measured by means of a high-resolution 3D pavement scanning system (0.025 mm vertical resolution). Texture data are processed and analyzed by means of the MountainsMap software. The correlations between the DFT friction coefficient and the texture parameters confirm the impact of change in aggregates’ characteristics (including height, shape, and material volume) on friction. A novel approach to detect the HFS friction coefficient transition based on aggregate loss, inspired by previous works on the tribology of coatings, is proposed. Using the proposed approach, preliminary outcomes show it is possible to observe the rapid friction coefficient transition, similar to observations at NCAT. Perspectives for future research are presented and discussed.


2021 ◽  
Vol 13 (5) ◽  
pp. 874
Author(s):  
Yu Chen ◽  
Mohamed Ahmed ◽  
Natthachet Tangdamrongsub ◽  
Dorina Murgulet

The Nile River stretches from south to north throughout the Nile River Basin (NRB) in Northeast Africa. Ethiopia, where the Blue Nile originates, has begun the construction of the Grand Ethiopian Renaissance Dam (GERD), which will be used to generate electricity. However, the impact of the GERD on land deformation caused by significant water relocation has not been rigorously considered in the scientific research. In this study, we develop a novel approach for predicting large-scale land deformation induced by the construction of the GERD reservoir. We also investigate the limitations of using the Gravity Recovery and Climate Experiment Follow On (GRACE-FO) mission to detect GERD-induced land deformation. We simulated three land deformation scenarios related to filling the expected reservoir volume, 70 km3, using 5-, 10-, and 15-year filling scenarios. The results indicated: (i) trends in downward vertical displacement estimated at −17.79 ± 0.02, −8.90 ± 0.09, and −5.94 ± 0.05 mm/year, for the 5-, 10-, and 15-year filling scenarios, respectively; (ii) the western (eastern) parts of the GERD reservoir are estimated to move toward the reservoir’s center by +0.98 ± 0.01 (−0.98 ± 0.01), +0.48 ± 0.00 (−0.48 ± 0.00), and +0.33 ± 0.00 (−0.33 ± 0.00) mm/year, under the 5-, 10- and 15-year filling strategies, respectively; (iii) the northern part of the GERD reservoir is moving southward by +1.28 ± 0.02, +0.64 ± 0.01, and +0.43 ± 0.00 mm/year, while the southern part is moving northward by −3.75 ± 0.04, −1.87 ± 0.02, and −1.25 ± 0.01 mm/year, during the three examined scenarios, respectively; and (iv) the GRACE-FO mission can only detect 15% of the large-scale land deformation produced by the GERD reservoir. Methods and results demonstrated in this study provide insights into possible impacts of reservoir impoundment on land surface deformation, which can be adopted into the GERD project or similar future dam construction plans.


Author(s):  
Wei-Tai Huang ◽  
Shih-Cheng Yang ◽  
Wen-Hsien Ho ◽  
Jinn-Tsong Tsai

Multiple performance objectives in turn-mill multitasking machining are investigated using the Taguchi method combined with the fuzzy theory. Using these two methods, optimized processing parameters can be rapidly identified to obtain optimized dimensional accuracy and geometrical shape angle, thus reducing machining cost and time. Herein, control factors for determining the single objective optimization parameter using the Taguchi robust process L9(34) orthogonal table were spindle speed (rpm), feed (mm/min), C-axis brake pressure (kg/cm2), axial cutting depth (mm), with dimensional accuracy and geometrical shape angle as objective characteristics. Then, signal-to-noise ratios of different groups were generated by gray correlation according to the experimental sequence to obtain the gray correlation coefficient for the calculation of the multiple performance characteristic index (MPCI). The MPCI results demonstrated that optimized dimensional accuracy was 0.005 mm and optimized geometrical shape angle was 0.004°. The optimized MPCI parameters were A3 (4000 rpm), B3 (250 mm/min), C3 (30 kg/cm2), and D3 (1.5 mm). It can reduce the processing for burr elimination and tool wear reduction by MPCI optimized process parameters.


Children ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 203
Author(s):  
Víctor Arufe Giráldez ◽  
Javier Puñal Abelenda ◽  
Rubén Navarro-Patón ◽  
Alberto Sanmiguel-Rodríguez

Background: One of the great challenges facing today’s society is the need to combat overweight and obesity in schoolchildren. This study aimed to analyze the impact of a cycle of didactic talks—given to families by a specialist in pediatrics, a specialist in nutrition and dietetics and a specialist in physical exercise—on childrens’ snack choices and nutrition quality. Methods: A longitudinal, quasi-experimental and quantitative investigation was designed, working with a total sample of 50 students divided into control and experimental groups. The nutritional quality of daily snacks was recorded during the month before and the month after the cycle of talks given by health experts. Results: An increase in the nutritional quality of the snacks was observed in the days after the talk—but, after a week, values returned to normal. Conclusions: The giving of educational talks to promote healthy habits may have a positive impact on the nutritional quality of school snacks in the days immediately following the talks. However, some forgetfulness was detected over time, which reduced the nutritional quality of the snacks once more. For future work, it is recommended that researchers measure the impact produced by giving regular talks.


2017 ◽  
Vol 13 (4) ◽  
pp. 403-418
Author(s):  
Kate Thompson ◽  
Pippa Brown ◽  
Stephanie Vieira

Purpose The purpose of this paper is to describe an intervention with a group of homeless men from the Horn of Africa, service users of the Horn of Africa Health and Wellbeing Project in London. The group was conceived by the second author who noted the presence of significant psychosocial issues for her clients, but equally their reluctance to access mainstream mental health or social care services. Design/methodology/approach Designing the group and introducing it to the men involved threw up some challenges which are explored, and the impact of the group on participants is evaluated. Findings Overall both the participants and the facilitators evaluated the group positively and it appeared to have led to lasting change for some of the group members, and this is described. The authors argue that this sort of group may be a more acceptable way to work on psychosocial issues than something more directly focused on mental health intervention. The group protocol is outlined along with suggestions for future work in this area. Originality/value This intervention represents a creative alternative to more mainstream psychological interventions for homeless or exiled men.


2013 ◽  
Vol 13 (15) ◽  
pp. 7875-7894 ◽  
Author(s):  
I. El Haddad ◽  
B. D'Anna ◽  
B. Temime-Roussel ◽  
M. Nicolas ◽  
A. Boreave ◽  
...  

Abstract. As part of the FORMES summer 2008 experiment, an Aerodyne compact time-of-flight aerosol mass spectrometer (cToF-AMS) was deployed at an urban background site in Marseille to investigate the sources and aging of organic aerosols (OA). France's second largest city and the largest port in the Mediterranean, Marseille, provides a locale that is influenced by significant urban industrialized emissions and an active photochemistry with very high ozone concentrations. Particle mass spectra were analyzed by positive matrix factorization (PMF2) and the results were in very good agreement with previous apportionments obtained using a chemical mass balance (CMB) approach coupled to organic markers and metals (El Haddad et al., 2011a). AMS/PMF2 was able to identify for the first time, to the best of our knowledge, the organic aerosol emitted by industrial processes. Even with significant industries in the region, industrial OA was estimated to contribute only ~ 5% of the total OA mass. Both source apportionment techniques suggest that oxygenated OA (OOA) constitutes the major fraction, contributing ~ 80% of OA mass. A novel approach combining AMS/PMF2 data with 14C measurements was applied to identify and quantify the fossil and non-fossil precursors of this fraction and to explicitly assess the related uncertainties. Results show with high statistical confidence that, despite extensive urban and industrial emissions, OOA is overwhelmingly non-fossil, formed via the oxidation of biogenic precursors, including monoterpenes. AMS/PMF2 results strongly suggest that the variability observed in the OOA chemical composition is mainly driven in our case by the aerosol photochemical age. This paper presents the impact of photochemistry on the increase of OOA oxygenation levels, formation of humic-like substances (HULIS) and the evolution of α-pinene SOA (secondary OA) components.


Sign in / Sign up

Export Citation Format

Share Document