Identification of Fe-Containing Phase in Oxidation Process of BOF Slag

2017 ◽  
Vol 726 ◽  
pp. 564-568
Author(s):  
Yu Hong Chen ◽  
Jiang Liang ◽  
Qi Xing Yang ◽  
Feng Lan Han

In this paper, the Fe-containing phases in BOF slag were identified before and after oxidized with atmospheric air. XRD and SEM with EDS results showed that The element Fe existed in slag in the form of calcium ferrite, wustite solid solution and hematite. Mg solid solute in wustite. After oxidized, magnetite became the major mineral phase in slag and Mg + replace the Fe2+ of magnetite crystal to form spinel.

Author(s):  
R. M. Anderson

Aluminum-copper-silicon thin films have been considered as an interconnection metallurgy for integrated circuit applications. Various schemes have been proposed to incorporate small percent-ages of silicon into films that typically contain two to five percent copper. We undertook a study of the total effect of silicon on the aluminum copper film as revealed by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and ion microprobe techniques as a function of the various deposition methods.X-ray investigations noted a change in solid solution concentration as a function of Si content before and after heat-treatment. The amount of solid solution in the Al increased with heat-treatment for films with ≥2% silicon and decreased for films <2% silicon.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 346
Author(s):  
Renata Hiraga ◽  
Otávio Gomes ◽  
Reiner Neumann

Maghemite (γ-Fe2O3) is a mineral formed from magnetite oxidation at low temperatures, an intermediate metastable term of the magnetite to hematite oxidation and could be mixed with both. It has magnetic susceptibility similar to magnetite, crystal structure close to magnetite with which it forms a solid solution, while compositionally it equals hematite. Maghemite is thus easily misidentified as magnetite by Χ-ray diffraction and/or as hematite by spot chemical analysis in iron ore characterization routines. Nonstoichiometric magnetite could be quantified in samples of Brazilian soils and iron ores by the Rietveld method using a constrained refinement of the Χ-ray patterns. The results were confirmed by reflected light microscopy and Raman spectroscopy, thus qualitatively validating the method. Χ-ray diffraction with the refinement of the isomorphic substitution of Fe2+ by Fe3+ along the magnetite-maghemite solid solution could help to suitably characterize maghemite in iron ores, allowing for the evaluation of its ultimate influence on mineral processing, as its effect on surface and breakage properties.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 203 ◽  
Author(s):  
Lei Rao ◽  
Yuanchi Dong ◽  
Mancheng Gui ◽  
Yaohui Zhang ◽  
Xingmei Shen ◽  
...  

Basic oxygen furnace (BOF) slag was modified by adding 3.5% SiO2 and holding at 1673 K for 0, 5, 40, 90, 240, or 360 min. Kilo-scale modification was also carried out. The growth, stratification, and liberation of P-rich C2S in the modified slag were investigated. The optimum holding time was 240 min, and 90% of C2S grains were above 30 μm in size. The phosphorus content increased with holding time, and after modification, the phosphorus content in C2S was nearly three times higher than that in the original slag (2.23%). Obvious stratification of C2S was observed in the kilo-scale modification. Upper C2S particles with a relatively larger size of 20–110 μm was independent of RO (FeO-MgO-MnO solid solution) and spinel, which is favorable for liberation. Lower C2S was less than 3 μm and was embedded in spinel, which is not conducive to liberation. The content of phosphorus in upper C2S (6.60%) was about twice that of the lower (3.80%). After grinding, most of the upper C2S existed as free particles and as locked particles in the lower. The liberation degree of C2S in the upper increased with grinding time, from 86.02% to 95.92% in the range of 30–300 s, and the optimum grinding time was 180 s. For the lower slag grinding for 300 s, the liberation degree of C2S was 40.07%.


1970 ◽  
Vol 52 (1) ◽  
pp. 27-37
Author(s):  
A. M. ABDEL MAGID ◽  
Z. VOKAC ◽  
NASR EL DIN AHMED

1. The respiratory function of the swim-bladders of Polypterus senegalus was investigated. Experiments were carried out in tap water with an oxygen tension of about 140 mm. Hg. 2. Both swim-bladders were cannulated through the body-walls of the unrestricted fish. Gas samples were analysed for their oxygen and carbon dioxide content before and after the fish visited the surface. 3. A sharp increase in oxygen and a decrease in carbon dioxide tension was always observed after inhalation. This proves that atmospheric air is actually inspired into the bladders. 4. After inspiration, the amount of oxygen in the bladders decreased rapidly. This shows that oxygen is taken up by the blood, even when the oxygen content of the water is normal. 5. Inspiration of air is preceded by expiration which, on the average, reduces the volume of the bladders to about 40%. 6. The uneven distribution of inhaled air in the right bladder is shown to be due to anatomical configuration.


Author(s):  
Liushun Wu ◽  
Wei Gao ◽  
Dawei Xie ◽  
Liaosha Li ◽  
Yuanchi Dong

AbstractIn the study, magnesium oxide acting as modifier was added to V-bearing steelmaking slag to concentrate vanadium, and then the effect of magnesium oxide on the formation of V-concentrating phase during cooling was investigated. Experimental results show that, in the case of the original slag, di-calcium silicate along with most of vanadate and phosphate in the slag forms solid solution, calcium ferrite which contains small part of vanadium in the slag and matrix without vanadium in turn precipitate during slowly cooling; For the sample with 8% MgO addition, two new phases (merwinite and V-concentrating phase) generate during slowly cooling, and the amount of di-calcium silicate decreases. Merwinite phase doesn’t contain vanadium, and V-concentrating phase (Ca


2012 ◽  
Vol 204-208 ◽  
pp. 4063-4066
Author(s):  
Xiao Liu ◽  
Long Mei Wang

A primary study on the resistance to high-temperature-oxidation of 430 ferrite stainless steel and its oxidation process before and after the addition of RE elements was reported. Results show that the oxidation resistance of 430 ferrite stainless steel after adding RE is indeed great. The value of oxidation rate of Sample 1 (without adding RE) is 2.87 times higher than Sample 2, respectively at 1423K after oxidizeing for totally 144h. And the dense and adherent Cr2O3 scale and FeCr2O4 scale are formed and played the protection role to the 430 ferrite stainless steel. In the internal oxidation layer, the pinning effect of silicon dioxide is strengthened by RE.


Sign in / Sign up

Export Citation Format

Share Document