Influence of Spray Drying Conditions on Particle Size and Morphology of Al2O3/ZrO2(3Y) Composite Particles

2017 ◽  
Vol 728 ◽  
pp. 172-177 ◽  
Author(s):  
Saowaluk Chiangka ◽  
Sukasem Watcharamaisakul ◽  
Boris Golman

Zirconia toughened alumina materials are frequently used in biomedical applications due to their enhanced toughness, strength and wear resistance compared to monolithic alumina. In this work, the influence of spray drying conditions is studied on the characteristics of spray-dried Al2O3/ZrO2(3Y) composite particles. The SEM images of composite particles confirm the formation of dense composite particles of round shape without internal holes. The particles of the best morphology of the median diameter of 44 µm were produced by drying the slurry of 70 wt.% solid content with feed rate of 15 ml/min using the drying air with inlet temperature of 210 °C and spraying air with flow rate of 357 l/h.

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 312 ◽  
Author(s):  
María Saavedra-Leos ◽  
César Leyva-Porras ◽  
Laura López-Martínez ◽  
Raúl González-García ◽  
Joel Martínez ◽  
...  

The influence of the processing conditions during the spray drying of mixtures of blueberry juice (BJ) and maltodextrin (MX) was determined quantitatively by the analysis of variance (ANOVA), and qualitatively by the surface response plots (SRP). The effect of two independent variables (inlet temperature, and MX concentration), and one categorical variable (type of MX), was determined on the yield (Y), content (Q), and retention (R) of the antioxidant quercetin 3-d-galactoside. From the ANOVA results, the concentration was the main variable affecting Y and Q, while temperature had a negligible effect, and the low molecular weight MXs exhibited a better response. The physicochemical characterization showed that the powder appearance and microstructure remained unaffected, but size and morphology of the particles varied with the processing conditions. This study established the optimal processing conditions for the spray drying of BJ-MX, and the application limits of the MXs based on the molecular weight distribution.


2021 ◽  
Vol 8 (6) ◽  
pp. 31-40
Author(s):  
Seniha Morsümbül ◽  
Emriye Perrin Akçakoca Kumbasar ◽  
Ahmet Çay

This study, which is the first in a three-part series, deals with the encapsulation of photochromic dyes by spray drying. An aqueous ethyl cellulose dispersion and a spirooxazine-based photochromic dye were used as a shell and core material, respectively. The effects of main encapsulation parameters, such as solvent type, inlet temperature, feed rate, solid content, and aspirator rate were investigated. The encapsulation results were evaluated by scanning electron microscopy (SEM) images, particle size measurements, thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The microcapsules obtained from a water-ethanol mixture exhibited photochromic properties. For microcapsule production, the optimum feed rate, total solid content, and aspirator rate were determined. Capsule formation improved with increased inlet air temperature. Spray drying to produce photochromic microcapsules could be a practical method for production of photochromic smart textiles.


2021 ◽  
Vol 11 (14) ◽  
pp. 6578
Author(s):  
Aleksandra Jedlińska ◽  
Alicja Barańska ◽  
Dorota Witrowa-Rajchert ◽  
Ewa Ostrowska-Ligęza ◽  
Katarzyna Samborska

This paper discusses the physicochemical properties of powders obtained by spray drying of cloudy beetroot juice, using dehumidified air in variants with or without carriers. The inlet air temperature was 130 °C or 90 °C, and the addition of the carriers was at a ratio of juice to carrier solids of 3:2. In the obtained powders, the following physicochemical properties were determined: water content and water activity, apparent density, loose and tapped density, porosity, flowability, particle size and morphology, and the content and retention of betalains. It was possible to dry cloudy beetroot juice without the use of carriers at low temperatures (90 or 130 °C). The 100% beetroot powders were characterized by satisfactory physicochemical properties, often better than those with carriers (including lower hygroscopicity and higher color saturation and yield). A lower loss of betalains was found for the powders with the addition of carriers. The best process yields were obtained for the powder without carriers at 130 °C and 90 °C.


2021 ◽  
Vol 02 ◽  
Author(s):  
Thanh V. Ngo ◽  
Christopher J. Scarlett ◽  
Michael C. Bowyer ◽  
Rebecca McCullum ◽  
Quan V. Vuong

Background: S. chinensis extract contains bioactive compounds, which exhibit high antioxidant activities. However, for commercial uses, it is necessary to encapsulate the extract to protect it from degradation. Objective: This study aimed to optimise spray-drying conditions and then compare with freeze-drying to identify the most suitable conditions for encapsulation of Salacia chinensis L. root extract. Method: Three factors of spray-drying encapsulation, including maltodextrin concentration, inlet temperature and feed rate, have been tested for the impacts on the physical and phytochemical properties of S. chinensis root extract. Based on the optimal conditions, the spray-drying was then compared with freeze-drying. Results: The results showed that maltodextrin concentration, inlet temperature and feed rate had significant impacts on recovery yield, phenolics, mangiferin and antioxidant activity of the spray-dried extract. The optimal spray-drying encapsulation conditions were maltodextrin concentration of 20 %, inlet temperature of 130ºC and feed rate of 9 mL/min. Under these optimal conditions, the encapsulated extract had comparable solubility, total phenolics, mangiferin, and antioxidant activity, lower bulk density, moisture content, and water activity as compared to encapsulated extract made using the freeze-drying technique. These optimal spray-drying conditions are recommended to encapsulate the extract of S. chinensis root. Conclusion: Spray-drying was found to be more effective for encapsulation of S. chinensis root extract than freeze-drying. Therefore, spray-drying is recommended for further applications.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Jiseon Park ◽  
Soon Bae Kwon ◽  
Hye Jeong Kwon

Abstract Objectives The purpose of this study was to investigate optimization of spray drying conditions for water-soluble powder using response surface methodology that is a statistical procedure used for optimization studies. Methods First, conditions of the extract used for spray drying were set. We compared heat water extraction (60–100 °C) with ethanol extraction (10–50%). After final selection of the method of extract used for spray drying, spray drying conditions were set. Independent variables included the additive contents of maltodextrin (X1), inlet temperature (X2), and air flow rate (X3). The dependent variables were yield, water absorption index (WAI) and total phenolic compounds. Results The yield was highest in 100 °C heat water extraction. The content of rutin was 29.77 mg/100 g in 90 °C heat water extraction, 28.07 mg/100 g in 100 °C heat water extraction and 24.24 mg/100 g in 10% ethanol extraction. The heat water extraction method at 100 °C was selected as an extract of the spray dryer. Statistical analysis revealed that independent variables significantly affected all the responses. A maximum yield was obtained at 15.55% of X1, 167.87 °C of X2 and 50.00 mL/min of X3. The water absorption index of asparagus increased with increasing MD ratio (X1), higher inlet temperature (X2) and higher air flow rate (X3). The total polyphenol contents of asparagus were higher when the MD addition ratio (X1) was 16.56%, the inlet temperature (X2) was higher and the air flow rate (X3) was higher. Conclusions In this study, extracts of asparagus using different extraction methods were compared for yield and spray-dried asparagus powders were investigated for their physicochemical characteristics. We were vary the range of the temperature, air flow rate, dextrin rate and set the best method for the functionality content of asparagus. Asparagus was spray - dried using 100 °C water extraction with high yield and high rutin content. The maximum spray drying yield was obtained at 15.55% of MD ratio, 167.87 °C of inlet temperature and 50.00 mL/min of air flow rate. There will be additional processed goods development made with what we have found. Funding Sources This study was supported by 2018 Regional Specialized Technology Development Project, Rural Development Administration, Republic of Korea. Supporting Tables, Images and/or Graphs


2014 ◽  
Vol 895 ◽  
pp. 305-308 ◽  
Author(s):  
Abdul Rahman Noor Azreen ◽  
Norlida Kamarulzaman ◽  
Nurhanna Badar ◽  
Mustaffa Nur Amalina ◽  
Kamarudin Norashikin

Iron Oxide, Fe2O3, has extensively been studied by many researchers because of their important uses for various applications such as magnetic storages, catalysts, anode, gas sensors and biomedical applications. In our work, Fe2O3 have been synthesized via a new self-propagating combustion (SPC) route using a weak organic acid as an oxidant. The precursor was annealed at three different temperatures. Three samples of Fe2O3 heated at 300 °C, 600 °C and 800 °C for 24 hours were characterized using X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM). The XRD pattern confirms that the crystal structure for both 600 °C and 800 °C samples are rhombohedral while for the 300 °C sample, rhombohedral and cubic phases are present. The SEM images showed that the 300 °C and 600 °C materials have irregular shapes. For the 800 °C sample the materials seem to be more crystalline with individual polyhedral shapes.


2021 ◽  
Vol 20 (03) ◽  
pp. 61-67
Author(s):  
Diep T. N. Duong

Pitaya production has been increasing, that offers abundant material for food processing. New product development would greatly add value for this produce. The present study focused on the effects of spray-drying conditions such as coating material concentration and spray-drying temperature on the physicochemical characteristics of red-fleshed dragon fruit powder made from peel and flesh. The sample quality was influenced by two experimental factors, which were the maltodextrin concentration and the spray-drying inlet temperature. The samples spray-dried at 140oC to 150oC with 15% maltodextrin (w/w) gave the powder with the highest betacyanin, polyphenol, and vitamin C retention results (97.62 - 98.86%, 90.66 - 91.63%, and 63.40 - 63.68%, respectively). The moisture content, water activity and solubility of the sample was 3.88% to 4.27%, 0.26 to 0.28 and 99%, respectively. Red-fleshed dragon fruit powder made from flesh and peel has numerous potentials in the beverage industry


2017 ◽  
Vol 47 (4) ◽  
pp. 567-577 ◽  
Author(s):  
Saroj Kumar Giri ◽  
Shukadev Mangaraj ◽  
Lalan Kumar Sinha ◽  
Manoj Kumar Tripathi

Purpose Soy beverage is becoming more and more popular because it is touted as a healthy food containing useful phytochemicals and is free from lactose and cholesterol. The purpose of this paper is to optimize the spray drying process parameters for obtaining soy beverage powder with good reconstitution and handling properties. Design/methodology/approach Pre-concentrated soy beverage was dried in a laboratory model spray dryer, and the effects of inlet air temperature (180-220°C), feed rate (20-40 ml/min) and feed solid content (15-25 per cent) on some physical parameters and reconstitution properties (wettability and dispersibility) of spray-dried soy beverage powders were investigated. Second order polynomial response surface model was selected for the analysis of data and optimization of the process. Findings Spray drying of soy beverage at different processing conditions resulted in powders with particle size (volume mean diameter) in the range of 86 to 156 µm. Dispersibility and wetting time of the spray-dried soy beverage powders was found to be in the range of 56 to 78 per cent and 30 to 90 s respectively, under various drying conditions. Inlet air temperature was found to be the main factor affecting most of the quality parameters, followed by solid content of the feed. Temperature significantly affected the wettability, dispersibility, colour parameters, particle size and flowability of the powder at p ≤ 0.01. Lower temperature and higher feed solid content produced bigger-sized powder particles with better handling properties in terms of flowability and cohesiveness. A moderate inlet air temperature (196°C), higher feed solid content (24 per cent) and lower feed rate (27 ml/min) were found suitable for drying of soy beverage. Practical implications The study implied the possibility of producing powder from soy beverage using the spray-drying method and optimized drying conditions for obtaining soy beverage powder with good reconstitution properties. Originality/value The finding of this study demonstrated for the first time how the inlet air temperature, feed solid content and feed rate during spray-drying influenced different quality parameters of soy beverage powder. Further, an optimized drying condition has been identified.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Wenjie Liu ◽  
Winston Duo Wu ◽  
Cordelia Selomulya ◽  
Xiao Dong Chen

Particle size and morphology are important properties of pharmaceutical particles. Preparation of microparticles with uniform particle size and morphology is necessary in order to systematically relate these properties to the release behavior and other functionalities such as drug encapsulation and dissolution. In this study, we successfully prepared monodisperse, nonagglomerated chitosan microparticles in a single step by a novel spray-drying technique. The control of particle size and morphology of spray-dried microparticles was investigated experimentally. Microparticles with larger particle size can be produced when chitosan precursor of higher concentration was used. Storage time of chitosan precursor, drying temperature, and addition of lactose were shown to be crucial parameters that affect the particle morphology. Appropriate choice of the drying temperature and precursor storage time permitted control of the particle morphology, ranging from nearly spherical to cap-shaped. Surface characteristics of the particles can be finely tuned by the amount of lactose added into the chitosan precursor.


Sign in / Sign up

Export Citation Format

Share Document