Quasi-Static Compressive Characteristics of Cu-Containing Closed-Cell Aluminum Foams

2017 ◽  
Vol 748 ◽  
pp. 173-180
Author(s):  
Jing Wang ◽  
Zan Zhang ◽  
Jian Ding ◽  
Chuan Rong Qiu ◽  
Xing Chuan Xia ◽  
...  

Closed-cell aluminum foam with different percentages of Cu was prepared by melt foaming method.The effect of Cu element on the quasi-static compressive properties of aluminum foam was investigated, both under as-cast and heat-treated conditions. The results showed that Cu element distributed in cell wall matrix mainly in the forms of Al-Cu solid solutions and AlCu3, Al6.1Cu1.2Ti2.7 intermetallics. Meanwhile, Cu-containing foams possessed much higher compressive strength than the commercially pure aluminum foams. Additionally, proper heat treatment could further improve the yield strength of Cu-containing foams and the effect of aging treatment was more obvious than the homogenizing heat treatment under the present conditions and the reasons were discussed.

Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 921 ◽  
Author(s):  
Donghui Yang ◽  
Zichen Zhang ◽  
Xueguang Chen ◽  
Xing Han ◽  
Tao Xu ◽  
...  

In this work, closed-cell aluminum foams with 4 wt.% contents of short-cut basalt fibers (BFs) were successful prepared by using the modified melt-foaming method. The pore size of BF-containing aluminum foam and commercially pure aluminum foam was counted. The distribution of BF and its effect on the compressive properties of closed-cell aluminum foams were investigated. The results showed that the pore size of BF-containing aluminum foams was more uniform and smaller. BF mainly existed in three different forms: Some were totally embedded in the cell walls, some protruded from the cell walls, and others penetrated through the cells. Meanwhile, under the present condition, BF-containing aluminum foams possessed higher compressive strength and energy absorption characteristics than commercially pure aluminum foams, and the reasons were discussed.


2018 ◽  
Vol 25 (4) ◽  
pp. 789-795 ◽  
Author(s):  
Ankur Bisht ◽  
Brijesh Gangil

Abstract Closed-cell aluminum foams with different percentages of zinc content were successfully prepared and investigated. The foamable precursors were prepared in a pit furnace by adding calcium as thickening agent, calcium carbonate as blowing agent and different percentages (0 wt.%, 0.5 wt.% and 1 wt.%) of zinc particles at 650–750°C. The distribution of Zn elements and quassi-static behavior of the foams at room temperature were investigated. The experimental results show that Zn element is uniformly distributed in cell wall matrix. The distribution of Zn elements had a significant effect on the quasi-static compressive behavior of aluminum foams; from the results, it is obvious that zinc-containing foams possessed higher compressive strength and energy absorption capacities than pure aluminum foams. Hence, it can be concluded that increase in percentage of Zn particles helps to increase the compressive strength, plateau region and energy absorption, in addition to providing better and uniform pores.


2013 ◽  
Vol 711 ◽  
pp. 195-198
Author(s):  
Suthiphong Sopha ◽  
Santirat Nansa-Arang ◽  
Prachya Peasura

This research was to study the synthesis of aluminum foam with pure aluminum and its mechanical properties. The synthesis varied at 1% - 5% of TiH2 and mixed with 99.7 % aluminum powder size of 44 µm. then compressed by hydraulic at 25, 30 and 35 tons in the diameter 27 mm, high 60 mm molded. The Aluminum foams were produced by using heat treatment at 800 °C for 10 minutes then cool to room temperature and tested its mechanical properties. The results showed that aluminum foams which lowest bulk density (0.958 g/cm3) was 2% TiH2 synthesized, compressed at 35 tons and highest bulk density (1.393 g/cm3) was 1% TiH2 synthesized, compressed at 25 tons. Moreover, the highest compressive strength (847 kg/cm2) showed at 2% TiH2 synthesized and compressed at 35 tons. Thus, this research contributes to a body of knowledge that informs the application of aluminum foam.


2021 ◽  
Vol 875 ◽  
pp. 203-210
Author(s):  
Talha Ahmed ◽  
Wali Muhammad ◽  
Zaheer Mushtaq ◽  
Mustasim Billah Bhatty ◽  
Hamid Zaigham

In this study, mechanical properties of friction stir welded Aluminum Alloy (AA) 6061 in three different heat treatment conditions i.e. Annealed (O), Artificially aged (T6) and Post Weld Heat Treated (PWHT) were compared. Plates were welded in a butt joint form. Parameters were optimized and joints were fabricated using tool rotational speed and travel speed of 500 rpm and 350 mm/min respectively. Two sets of plates were welded in O condition and out of which one was, later, subjected to post weld artificial aging treatment. Third set was welded in T6 condition. The welds were characterized by macro and microstructure analysis, microhardness measurement and mechanical testing. SEM fractography of the tensile fracture surfaces was also performed. Comparatively better mechanical properties were achieved in the plate with PWHT condition.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Zhen Wang ◽  
Wen Bin Gu ◽  
Xing Bo Xie ◽  
Qi Yuan ◽  
Yu Tian Chen ◽  
...  

According to the randomness of the spatial distribution and shape of the internal cells of closed-cell foam aluminum and based on the Voronoi algorithm, we use ABAQUS to model the random polyhedrons of pore cells firstly. Then, the algorithm of generating aluminum foam with random pore size and random wall thickness is written by Python and Fortran, and the mesh model of random polyhedral particles and random wall thickness was established by the algorithm read in by TrueGrid software. Finally, the mesh model is impo rted into the LS-DYNA software to remove the random polyhedron part of the pore cell. Compared with the results of scanning electron microscopy and antiknock test, the morphology and properties of the model are close to those of the real aluminum foam material, and the coincidence degree is more than 91.4%. By means of numerical simulation, the mechanism of the wall deformation, destruction of closed-cell aluminum foams, and the rapid attenuation of explosion stress wave after the interference of reflection and transmission of bubbles were studied and revealed. It is found that aluminum foam deformation can be divided into four areas: collapse area, fracture area, plastic deformation area, and elastic deformation region. Therefore, the explosion resistance is directly related to the cell wall thickness and bubble size, and there is an optimal porosity rule for aluminum foam antiknock performance.


Author(s):  
Chen Li ◽  
Zhi Hua Wang ◽  
Hong Wei Ma ◽  
Long Mao Zhao ◽  
Gui Tong Yang

2020 ◽  
Vol 24 ◽  
pp. 101249
Author(s):  
Yoshihiko Hangai ◽  
Mizuki Ando ◽  
Masataka Ohashi ◽  
Kenji Amagai ◽  
Ryosuke Suzuki ◽  
...  

2014 ◽  
Vol 699 ◽  
pp. 227-232
Author(s):  
Nurulhilmi Zaiedah Nasir ◽  
Mohd Ahadlin Mohd Daud ◽  
Mohd Zulkefli Selamat ◽  
Ahmad Rivai ◽  
Sivakumar Dhar Malingam

This paper investigated the effect of heat treatment on mechanical properties and microstructure of 6061 aluminium alloy. The aluminium alloys were examined in the heat treated conditions, using different quenching media, water and oil. The alloy was solution heat treated at temperature of 529oC for one, three and five hour respectively. Aging treatment was carried out at temperature of 160oC which is assumed to be the best temperature for ageing process. Hardness measurement was carried out using a Brinell Hardness Tester Machine. The results shows hardness and impact strength are inversely proportional to each other, as the hardness of 6061 aluminium alloy decreases and impact strength increases.


2013 ◽  
Vol 747-748 ◽  
pp. 111-114
Author(s):  
Lin Song ◽  
Xiang Jun Xu ◽  
Jun Pin Lin ◽  
Lai Qi Zhang

Effects of annealing treatment on microstructure and the compressive properties of hot-worked Ti-45Al-8Nb-(W, B, Y) alloy were investigated. Microstructure of the extrusion plus multi-step forging pancake before and after heat treatment was analyzed by SEM and TEM, respectively. The annealing was conducted by holding samples at 1100°C for 2hrs, and followed by air cooling and furnace cooling. The mechanical properties were measured by Instron test machine. The microstructure evolution during compressive deformation was analyzed by TEM. The results showed that after the annealing the microstructure change could not be observed under SEM but can be observed under TEM. Many dislocation clusters were removed by heat treatment. The heat treated samples had similar compression behaviors with the pancake. TEM investigation showed that the numerous twin intersections occured in γ matrix during compression. The twin spaces tended to decrease as the deformation and the intersection increasing.


2013 ◽  
Vol 20 (05) ◽  
pp. 1350053 ◽  
Author(s):  
XIANYONG ZHU ◽  
JIAAN LIU

Micro-arc oxidation (MAO) coatings were prepared on closed-cell aluminum foams. The microstructure, elemental distribution and phase composition of the MAO coatings were analyzed by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The corrosion resistances and compressive properties of the uncoated and coated aluminum foams were studied by electrochemical polarization test and mechanical test, respectively. The results show that the MAO coatings cover the surfaces of closed-cell aluminum foams. The average thickness of the MAO coatings is 7 μm. The MAO coatings are mainly composed of γ- Al 2 O 3 phase. The corrosion resistances of the closed-cell aluminum foams are improved by MAO treatment. The as-received foams show a low corrosion potential (-1.36 V), on contrary, the MAO coated foams get an increase corrosion potential (-0.78 V). But the MAO coated foams show the marginal variation in compressive strengths when the thickness of the coatings could be negligible compared with the total thickness of the foams.


Sign in / Sign up

Export Citation Format

Share Document