Simulation Analysis of RuT450 Drilling Force Based on LS-DYNA Gun Drilling

2018 ◽  
Vol 764 ◽  
pp. 271-278 ◽  
Author(s):  
H. Guo ◽  
W. Yang ◽  
L. Liu ◽  
X.K. Yang ◽  
Y.G. Wang ◽  
...  

Cutting force is one of the most important parameters in the machining process, it significantly influenced machining precision of the workpiece, power consumed in the machining process, wear of the cutting tools and so on. There are many factors that affect the cutting force, such as the performance of the workpiece material, cutting speed, usage of the cutting fluid, etc. Single factor variable method was used in this paper, RuT450 was used as workpiece, welded cemented carbide gun drill was used as cutting force and LS-DYNA was used as simulation platform to established the cutting simulation model to analyzed the impact of the cutting speed and feed rate to the drilling force. Simulation results show that, at the low speed drilling stage, drilling force increases with the increase of the feed rate and decreases with the increase of the rotation feed, from the stress cloud it could be seen that the equivalent stress near the drill tip reached the maximum in the drilling process.

2011 ◽  
Vol 188 ◽  
pp. 372-375
Author(s):  
H.L. Zhang ◽  
Jin Chen

Drilling is one of the complex machining processes, which has been widely applied in the manufacturing area. In this paper, a 3D coupled thermo-mechanical finite element model was used for simulating the thrust force, torque and von Mises equivalent stress at different cutting conditions. The J-C damage model (shear failure) was used in conjunction with the J-C plasticity model, as well as the continuous adaptive remeshing technical. The results show that the thrust force and torque increase with the increasing of the cutting speed and feed rate, and the influence of the feed rate is more obviously.


2019 ◽  
Vol 26 (4) ◽  
pp. 179-184
Author(s):  
Justyna Molenda

AbstractNowadays lot of scientific work inspired by industry companies was done with the aim to avoid the use of cutting fluids in machining operations. The reasons were ecological and human health problems caused by the cutting fluid. The most logical solution, which can be taken to eliminate all of the problems associated with the use of cooling lubricant, is dry machining. In most cases, however, a machining operation without lubricant finds acceptance only when it is possible to guarantee that the part quality and machining times achieved in wet machining are equalled or surpassed. Surface finish has become an important indicator of quality and precision in manufacturing processes and it is considered as one of the most important parameter in industry. Today the quality of surface finish is a significant requirement for many workpieces. Thus, the choice of optimized cutting parameters is very important for controlling the required surface quality. In the present study, the influence of different machining parameters on surface roughness has been analysed. Experiments were conducted for turning, as it is the most frequently used machining process in machine industry. All these parameters have been studied in terms of depth of cut (ap), feed rate (f) and cutting speed (vc). As workpiece, material steel S235 has been selected. This work presents results of research done during turning realised on conventional lathe CDS 6250 BX-1000 with severe parameters. These demonstrate the necessity of further, more detailed research on turning process results.


2018 ◽  
Vol 38 (1) ◽  
pp. 40-44
Author(s):  
Krzysztof Jarosz ◽  
Piotr Niesłony ◽  
Piotr Löschner

Abstract In this article, a novel approach to computer optimization of CNC toolpaths by adjustment of cutting speed vcand depth of cut apis presented. Available software works by the principle of adjusting feed rate on the basis of calculations and numerical simulation of the machining process. The authors wish to expand upon this approach by proposing toolpath optimization by altering two other basic process parameters. Intricacies and problems related totheadjustment of apand vcwere explained in the introductory part. Simulation of different variant of the same turning process with different parameter values were conducted to evaluate the effect of changes in depth of cut and cutting speed on process performance. Obtained results were investigated on the account of cutting force and tool life. The authors have found that depth of cut substantially affects cutting force, while the effect of cutting speed on it is minimal. An increase in both depth of cut and cutting speed affects tool life negatively, although the impact of cutting speed is much more severe. An increase in depth of cut allows for a more significant reduction of machining time, while affecting tool life less negatively. On the other hand, the adjustment of cutting speed helpsto reduce machining time without increasing cutting force component values and spindle load.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 840 ◽  
Author(s):  
Rashid Ali Laghari ◽  
Jianguang Li ◽  
Mozammel Mia

Cutting force in the machining process of SiCp/Al particle reinforced metal matrix composite is affected by several factors. Obtaining an effective mathematical model for the cutting force is challenging. In that respect, the second-order model of cutting force has been established by response surface methodology (RSM) in this study, with different cutting parameters, such as cutting speed, feed rate, and depth of cut. The optimized mathematical model has been developed to analyze the effect of actual processing conditions on the generation of cutting force for the turning process of SiCp/Al composite. The results show that the predicted parameters by the RSM are in close agreement with experimental results with minimal error percentage. Quantitative evaluation by using analysis of variance (ANOVA), main effects plot, interactive effect, residual analysis, and optimization of cutting forces using the desirability function was performed. It has been found that the higher depth of cut, followed by feed rate, increases the cutting force. Higher cutting speed shows a positive response by reducing the cutting force. The predicted and experimental results for the model of SiCp/Al components have been compared to the cutting force of SiCp/Al 45 wt%—the error has been found low showing a good agreement.


2012 ◽  
Vol 271-272 ◽  
pp. 452-456
Author(s):  
Shu Feng Sun ◽  
Ping Ping Wang ◽  
Xin Wu ◽  
Sen Lin

Machining process parameters are main factors influencing machining quality and efficiency. Finite element models of tool and part are set up using finite element software Deform-3D. Variety laws of cutting force and temperature under different process parameters are simulated. The results are analyzed. Cutting force grows obviously with the growth of cutting speed (vc). However, cutting force fluctuates and decreases with the growth of cutting depth (ap) indicating the phenomenon of work hardening. Cutting force fluctuates and grows with the growth of feed rate ( f ). But the influence of feed rate ( f ) to cutting force is smaller than that of cutting speed (vc). The growths of the above mentioned three process parameters all cause the rise of temperature. Machining simulation research provides the optimum process parameters for CNC programming.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Rashid Ali Laghari ◽  
Jianguang Li

Abstract In this study, the proposed experimental and second-order model for the cutting forces were developed through several parameters, including cutting speed, feed rate, depth of cut, and two varying content of SiCp. Cutting force model was developed and optimized through RSM and compared for two different percentages of components SiCp/Al 45% and SiCp/Al 50%. ANOVA is used for Quantitative evaluation, the main effects plot along with the evaluation using different graphs and plots including residual analysis, contour plots, and desirability functions for cutting forces optimization. It provides the finding for choosing proper parameters for the machining process. The plots show that during increment with depth of cut in proportion with feed rate are able to cause increments in cutting forces. Higher cutting speed shows a positive response in both the weight percentage of SiCp by reducing the cutting force because of higher cutting speed increases. A very fractional increasing trend of cutting force was observed with increasing SiCp weight percentages. Both of the methods such as experiment and model-predicted results of SiCp/Al MMC materials were thoroughly evaluated for analyzing cutting forces of SiCp/Al 45%, and SiCp/Al 50%, as well as calculated the error percentages also found in an acceptable range with minimal error percentages. Article Highlights This study focuses on the effect of cutting parameters as well as different percentage of SiC particles on the cutting forces, while comparing the results of both SiC particles such as SiCp/Al 45%, and SiCp/Al 50% the result shows that there isn’t fractional amount of impact on the cutting force with nominal increasing percentages of SiC particles. Cutting speed in machining process of SiCp/Al shows positive response in reducing the cutting forces, however, increasing amount of depth of cut followed by increasing feed rate creates fluctuations in cutting force and thus increases the cutting force in the cutting process. The developed RSM mathematical model which is based on the box Behnken design show excellent competence for predicting and suggesting the machining parameters for both SiCp/Al 45%, and SiCp/Al 50% and the RSM mathematical model is feasible for optimization of the machining process with good agreement to experimental values.


This project was done to learn the effects of cutting parameters on cutting force and roughness (surface roughnes) of AZ31 magnesium (Mg) alloy. Machining parameters involved in this project are cutting speed, feed rate, and lubrication methods. Deckel Maho DMU 50 eVolution high speed milling machine was using and uncoated carbide button insert was used as the cutting tool. Cutting force was measured during the milling process and roughness was measured after that and cleaning process to ensure no interference that would conflicted the results. The best machining parameters identified when feed rate at 0.05 mm per tooth, cutting speed are at 600 m per min, and minimum quantity lubrication was applied during the machining process. From analysis of variance (ANOVA) table generated by Minitab software, this project can conclude that feed rate, cutting speed, and lubrication methods are significant to cutting force and roughness when machining AZ31 Mg Alloy Therefore, the relationship of surface roughness and cutting force should be taken as a major key point in machining processes. In the automotive field, magnesium was used to fabricate an engine that place at front body due to reduce the weight of vehicle. This design can increase performance and balancing of weight [1].


Author(s):  
Akhtar Khan ◽  
Kalipada Maity

The present work explores the application of a novel Multi-Criteria Decision Making (MCDM) based approach known as VIKOR analysis combined with Taguchi technique for simultaneous optimization of some correlated cutting variables in turning of commercially pure titanium grade 2 using uncoated carbide inserts. The experiments have been carried out according to Taguchi’s L27 orthogonal array. Three input variables viz. cutting speed, feed rate and depth of cut have been taken at three different levels. The impact of these cutting variables on cutting force, surface quality and material removal rate has been investigated. The optimal combination of machining parameters has been evaluated to minimize the cutting force and to maximize the surface finish and production rate using MCDM based VIKOR analysis method. ANOVA (analysis of variance) test has been performed to determine the most influencing cutting variable on overall quality measure i.e. VIKOR index (Qi). The optimal setting of machining variables has been shown using main effects plot for S/N ratio for Qi. The results of ANOVA exhibit that the cutting speed is the governing machining parameter followed by feed rate on overall quality index (Qi). The minimum (desirable) value of Qi is achieved at the parametric combination of v3-f1-d3 i.e. cutting speed (110 m/min), feed rate (0.08 mm/rev) and depth of cut (0.4 mm) respectively. The feasibility of the proposed methodology has been verified by conducting a confirmation test.


Author(s):  
Rodolfo E. Haber ◽  
Rodolfo Haber-Haber ◽  
Angel Alique ◽  
Agusti´n Jime´nez

In order to improve efficiency of high-performance drilling processes while preserving tool life, the current study focuses on the design and implementation of an optimal fuzzy-control system for drilling force. The main topic of this study is the design and implementation of a networked fuzzy controller. The control algorithm is connected to the process through a multipoint interface (MPI) bus, a proprietary programming and communication interface for peer-to-peer networking that resembles the PROFIBUS protocol. The output (i.e., feed-rate) signal is transmitted through the MPI; therefore, network-induced delay is unavoidable. The optimal tuning of the fuzzy controller using a maximum known delay is based on the integral time absolute error (ITAE) criterion. In this study, a step in the force reference signal is considered a disturbance, and the goal is to assess how well the system follows set-point changes using the ITAE criterion. The main advantage of the approach presented herein is the design of an optimal fuzzy controller using a known maximum allowable delay to deal with uncertainties and nonlinearities in the drilling process and delays in the network-based application. In order to suppress the cutting-force increase, the feed rate is decreased gradually as the drilling depth increases, and the cutting force is quite well regulated at the given setpoint. The good transient response is verified by improvements in the integral time absolute error (11.77), integral time square error (2.912) and integral of absolute error (12.81) performance indices. Moreover, the experimental results without oscillations and overshoot corroborate that increases and fluctuations in force drilling can be suppressed despite an increase in drilling depth. Thus, the drilling process can be stabilized and the risk of drill failure can be greatly reduced through a fuzzy-control system.


2012 ◽  
Vol 505 ◽  
pp. 15-19 ◽  
Author(s):  
Mohd Yusof Noordin ◽  
Ali Davoudinejad ◽  
Mohd Rosmaini Shaari

High usage of hardened steel in the automotive, gear, bearing, tool and die making industries, makes it a highly suitable material for industrial production and research. This study was undertaken to investigate the performance of coated ceramic insert with different edge preparations in terms of cutting force and surface roughness. Plain turning experiments were carried out under dry cutting condition at two different cutting speeds and feed rates with a constant depth of cut. The workpiece material is ASSAB DF-3 hardened steel with a 55 ±1 HRC hardness. Results showed that insert edge preparation had a direct influence on the radial and feed forces but not on the tangential force. The use of T-land edge preparation results in the lowest radial and feed forces. In terms of surface finish, the use of honed with finishing wiper insert results in obtaining the lowest surface roughness values. Feed rate had a significant effect on surface roughness whereby by increasing feed rate, the surface roughness value also increased, whereas the effect of cutting speed was found to be insignificant. Increasing cutting speed resulted in lower feed and tangential forces however by increasing feed rate all cutting forces increased.


Sign in / Sign up

Export Citation Format

Share Document