Cutting of a Thick Glass Plate by Using Hot Wire

2018 ◽  
Vol 774 ◽  
pp. 405-409
Author(s):  
Yukio Miyashita ◽  
Yohei Kurabe ◽  
Taro Hiromoto ◽  
Yuchi Otsuka

A thick glass plate was cut by using hot wire. Crack growing was stopped when wire temperature was low. Ligament length decreased with increase in temperature of hot wire and full-cutting was achieved at the temperature of 650°C. The center region in the thickness direction seemed to propagate earlier compared to surfaces regions when the crack propagation was stopped. Finite element thermal stress analysis was carried out. According to distribution of thermal stress inside a glass plate, higher stress was generated in the bottom region at the beginning of the process but occurred in the center region in the later stage as matching with the experimental result.

2013 ◽  
Vol 544 ◽  
pp. 339-342 ◽  
Author(s):  
Wei Hong Li ◽  
Cong Li ◽  
Yan Qiu

This article through to hollow photovoltaic glass service in the process of temperature test, by using the finite element simulation of the temperature change caused by the thermal stress, using the finite element simulation of the temperature change caused by the thermal stress. According to the heat conduction equation and boundary condition, derivation hollow photovoltaic through the finite element software to hollow photovoltaic glass plate thermal stress for numerical simulation and research. Adopted in structural analysis directly define temperature load method analysis force hollow photovoltaic glass thermal stress. Use the finite element software to hollow photovoltaic glass plate thermal stress for numerical simulation and research. For the known temperature field distribution situation, adopted in structural analysis directly define temperature load method analysis force hollow photovoltaic glass thermal stress. Through the finite element software ANSYS to calculate different unit was carried out and the numerical simulation, the results show that the analytical solution and the numerical solution has good goodness of fit. The proposed calculation formula for engineering design has the certain reference value.


2020 ◽  
Vol 13 (3) ◽  
pp. 115-129
Author(s):  
Shin’ichi Aratani

High speed photography using the Cranz-Schardin camera was performed to study the crack divergence and divergence angle in thermally tempered glass. A tempered 3.5 mm thick glass plate was used as a specimen. It was shown that two types of bifurcation and branching existed as the crack divergence. The divergence angle was smaller than the value calculated from the principle of optimal design and showed an acute angle.


2019 ◽  
Vol 35 (5) ◽  
pp. 491-497
Author(s):  
Kun Wang ◽  
Wenhao Li ◽  
Zhanshan Wang
Keyword(s):  
Hot Wire ◽  

Author(s):  
Jaan Taagepera ◽  
Marty Clift ◽  
D. Mike DeHart ◽  
Keneth Marden

Three vessel modifications requiring heat treatment were analyzed prior to and during a planned turnaround at a refinery. One was a thick nozzle that required weld build up. This nozzle had been in hydrogen service and required bake-out to reduce the potential for cracking during the weld build up. Finite element analysis was used to study the thermal stresses involved in the bake-out. Another heat treatment studied was a PWHT of a nozzle replacement. The heat treatment band and temperature were varied with location in order to minimize cost and reduction in remaining strength of the vessel. Again, FEA was used to provide insight into the thermal stress profiles during heat treatment. The fmal heat treatment study was for inserting a new nozzle in a 1-1/4Cr-1/2Mo reactor. While this material would ordinarily require PWHT, the alteration was proposed to be installed without PWHT. Though accepted by the Jurisdiction, this nozzle installation was ultimately cancelled.


2019 ◽  
Vol 7 (1) ◽  
pp. 1977-1986 ◽  
Author(s):  
Chih-Kuang Lin ◽  
Tsung-Ting Chen ◽  
An-Shin Chen ◽  
Yau-Pin Chyou ◽  
Lieh-Kwang Chiang

2016 ◽  
Vol 5 (1) ◽  
pp. 232-249
Author(s):  
Riccardo Vescovini ◽  
Lorenzo Dozio

Abstract The analysis of monolithic and sandwich plates is illustrated for those cases where the boundary conditions are not uniform along the thickness direction, and run at a given position along the thickness direction. For instance, a sandwich plate constrained at the bottom or top face can be considered. The approach relies upon a sublaminate formulation,which is applied here in the context of a Ritz-based approach. Due to the possibility of dividing the structure into smaller portions, viz. the sublaminates, the constraints can be applied at any given location, providing a high degree of flexibility in modeling the boundary conditions. Penalty functions and Lagrange multipliers are introduced for this scope. Results are presented for free-vibration and bending problems. The close matching with highly refined finite element analyses reveals the accuracy of the proposed formulation in determining the vibration frequencies, as well as the internal stress distribution. Reference results are provided for future benchmarking purposes.


2014 ◽  
Vol 501-504 ◽  
pp. 578-582
Author(s):  
Liang Hsu ◽  
Ming Long Hu ◽  
Jun Zhi Zhang

Considering secondary load, simulate the axial compression process of reinforced concrete square columns strengthened with igneous rock fiber reinforced polymer with Abaqus. Make a comparison between the simulation result and experimental result. The finite-element model can simulate the experiment preferably. And the impact of lagged strain is very obvious.


2019 ◽  
Vol 289 ◽  
pp. 10010
Author(s):  
Kayo Ohashi ◽  
Jun-ichi Arai ◽  
Toshiaki Mizobuchi

Clarifying the creep behaviour of concrete at early age not only improves the accuracy of temperature stress analysis but also contributes to prediction accuracy and control measures in cracks caused by thermal stress. However, most past researches on creep behaviour were investigated after 28 days. Currently, it is difficult to accurately perceive the creep behaviour of concrete at an early age in the test method of creep which is generally carried out. Therefore, it is necessary to evaluate the creep behaviour of concrete at early age and to establish a convenient test method to estimate the creep behaviour. Therefore, in this study, experiments were carried out for concrete at early age within one week. As the result of the experiments, it was shown that the creep strain is proportional to the load stress of concrete at an early age and the strain of specific creep decreases as the loaded age increases. In addition, based on the experimental results, an estimation equation for creep strain at early age was proposed. Within the scope of this experimental result, it was confirmed that the estimation equation proposed in this study accurately represented the creep behaviour of concrete at early age.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Vishnu Verma ◽  
A. K. Ghosh ◽  
G. Behera ◽  
Kamal Sharma ◽  
R. K. Singh

The miniature disk bending test is used to evaluate the mechanical behavior of irradiated materials and their properties (e.g., yield stress and strain hardening exponent) to determine mainly ductility loss in steel due to irradiation from the load-deflection behavior of the disk specimen. In the miniature disk bending machine the specimen is firmly held between the two horizontal jaws of punch, and an indentor with a spherical ball travels vertically. Analytical solutions for large amplitude plastic deformation become rather unwieldy. Hence, a finite element analysis has been carried out. The finite element model considers contact between the indentor and test specimen, friction between various pairs of surfaces, and elastic plastic behavior. This paper presents the load versus deflection results of a parametric study where the values of various parameters defining the material properties have been varied by ±10% around the base values. Some well-known analytical solutions to this problem have also been considered. It is seen that the deflection obtained by analytical elastic bending theory is significantly lower than that obtained by the elastoplastic finite element solution at relatively small values of load. The finite element solution has been compared with one experimental result and values are in reasonably good agreement. With these results it will be possible to determine the material properties from the experimentally obtained values of load and deflection.


Sign in / Sign up

Export Citation Format

Share Document