Effects of Carbon Fiber Hybridization on the Compressive Strength of Glass-Carbon/Epoxy Hybrid Composite Pipes before and after Low Velocity Impact

2019 ◽  
Vol 796 ◽  
pp. 30-37 ◽  
Author(s):  
Naseer H. Farhood ◽  
Saravanan Karuppanan ◽  
Hamdan Haji Ya ◽  
Mark Ovinis

In this paper, the effect of carbon fiber hybridization on the compressive strength of glass-carbon/epoxy hybrid filament wound pipes before and after low velocity impact was investigated experimentally. Specifically, the effects of different stacking sequence and fiber content ratio on the compression and compression after impact (CAI) behavior of hybrid glass-carbon fiber reinforced polymer pipes were analyzed. Hybrid composite pipes composed of eight layers of / reinforced with thin HDPE liner were manufactured utilizing filament winding technique. A series of axial compressive tests were carried out on the composite pipes for the non-impacted and impacted specimens under 100 J of impact energy. Residual compressive strength, damage tolerance and failure modes were examined and analyzed for different pipe configurations, before and after the impact. The failure modes of non-impacted and impacted composite pipes under compressive loading were analyzed visually. The results show that, under the same conditions of impact energy, specimens with alternative fibers exhibited better impact resistance regardless of fiber content ratio. Moreover, carbon fiber reinforced epoxy specimens exhibited the worst impact damage tolerance for a given impact energy level although having the highest compressive strength before impact among the samples, with the highest percentage reduction of 62% in residual compressive force after impact.

2020 ◽  
pp. 096739112093818
Author(s):  
Naseer H Farhood ◽  
Saravanan Karuppanan ◽  
Hamdan H Ya ◽  
MTH Sultan

Recently, the incorporation of several different types of fibers into a single matrix has led to the development of superior hybrid composite properties at a cheaper cost. Fiber hybridization is one of the active strategies to toughen composites and improve impact damage resistance. However, the extraordinary high strength and stiffness of the carbon fiber as well as its lower damage tolerance make it more susceptible under the impact loading. This article mainly aims to improve impact damage resistance of carbon fiber pipes through fiber hybridization strategy with glass fibers under low-velocity impact. The composite pipes reinforced with thin internal liner of high-density polyethylene were fabricated through filament winding technology. Eight pipe configurations with different stacking sequences and fiber content ratios with a constant winding angle of [Formula: see text] were fabricated and tested under impact energies, 50 and 100 J. The damage characterization was evaluated using the optical imaging and mechanical micrograph sectioning technique. Results indicate that the hybrid configurations showed better energy absorption than reference carbon fibers specimen under 50 J impact energy. Specifically, specimens with glass fibers on the exterior side and alternative configuration of carbon–glass fibers showed better impact resistance with less damage observed. Meanwhile, the specimens with glass fiber on the exterior side suffered from extreme damage with increase in the energy absorption and maximum displacement for both fiber content ratios under 100 J of impact energy.


2021 ◽  
pp. 152808372110154
Author(s):  
Ziyu Zhao ◽  
Tianming Liu ◽  
Pibo Ma

In this paper, biaxial warp-knitted fabrics were produced with different high tenacity polyester linear density and inserted yarns density. The low-velocity impact property of flexible composites made of polyurethane as matrix and biaxial warp-knitted fabric as reinforcement has been investigated. The effect of impactor shape and initial impact energy on the impact response of flexible composite is tested. The results show that the initial impact energy have minor effect on the impact response of the biaxial warp-knitted flexible composites. The impact resistance of flexible composite specimen increases with the increase of high tenacity polyester linear density and inserted yarns density. The damage morphology of flexible composite materials is completely different under different impactor shapes. The findings have theoretical and practical significance for the applications of biaxial warp-knitted flexible composite.


2012 ◽  
Vol 583 ◽  
pp. 203-206
Author(s):  
Hai Ming Hong ◽  
Ming Li ◽  
Jian Yu Zhang ◽  
Yi Ning Zhang

A series of low-velocity impact tests and residual compressive strength tests after impacts on CCF300/QY8911 composite materials were carried out to study the mechanism of compression failure of the laminates after low-velocity impact. The curves of impact energy verse dent depth and impact energy verse the damage area was obtained. And the residual compressive strength and stiffness after impact verse damage parameters were analyzed. The results showed that when the impact energy exceeded the inflection point, as the impact energy increased, the dent depth on the impacted surface of the laminates notably increased while the damage area of the internal layers merely increased slowly. If the impact energy was continued to increase, the expansion of the laminates' internal damage mainly consisted of fiber breaks. The main reason for the decrease in compressive performance of composite laminates was inside delamination between layers, while in the case in which impact energy exceeded the inflection point, there were no obvious changes in delamination damage area for different energy, so the residual compressive performance kept almost stable.


Holzforschung ◽  
2018 ◽  
Vol 72 (8) ◽  
pp. 681-689 ◽  
Author(s):  
Mostafa Mohammadabadi ◽  
Vikram Yadama ◽  
LiHong Yao ◽  
Debes Bhattacharyya

AbstractProfiled hollow core sandwich panels (SPs) and their components (outer layers and core) were manufactured with ponderosa and lodgepole pine wood strands to determine the effects of low-velocity impact forces and to observe their energy absorption (EA) capacities and failure modes. An instrumented drop weight impact system was applied and the tests were performed by releasing the impact head from 500 mm for all the specimens while the impactors (IMPs) were equipped with hemispherical and flat head cylindrical heads. SPs with cavities filled with a rigid foam insulation material (SPfoam) were also tested to understand the change in EA behavior and failure mode. Failure modes induced by both IMPs to SPs were found to be splitting, perforating, penetrating, core crushing and debonding between the core and the outer layers. SPfoams absorbed 26% more energy than unfilled SPs. SPfoams with urethane foam suffer less severe failure modes than SPs. SPs in a ridge-loading configuration absorbed more impact energy than those in a valley-loading configuration, especially when impacted by a hemispherical IMP. Based on the results, it is evident that sandwich structure is more efficient than a solid panel concerning impact energy absorption, primarily due to a larger elastic section modulus of the core’s corrugated geometry.


2021 ◽  
Author(s):  
Karmanya Ratra

Carbon fiber bicycle wheels were tested under low velocity impact to monitor the damage evolution of the impact event. A wheel model designed by KQS Inc. (industrial partner) with eight different configurations, including spoke tension, number of spokes, and location of impact on the rim were investigated. IR thermography combined with PCA was used to monitor the damage during impact. Results showed that wheels in line with spokes had 16% higher impact energy absorption compared to those impacted in between spokes on average (58.9 J vs 70.2 J). The 20 spoked wheels had a slightly higher (6%) impact energy absorption than the 24 spoked wheels. The added stiffness due to the extra spokes reduced the impact energy absorption of rim. Wheels with higher spoke tension also had slightly improved impact energy absorption (4%). The test protocol established in this study provides a good understanding of the wheel’s impact damage evolution.


2019 ◽  
Vol 8 (4) ◽  
pp. 6002-6006

Filament winded composite pipes are used in various environments conditions for different applications. In this study filament winded hybrid (Glass/Carbon/Epoxy) composite pipes with interwoven (CG90/CG60) orientation were tested under various low velocity impact conditions for two different thickness. Internal diameter as 50 mm with various thicknesses such as 4 mm, 6mm are used to study the effect of impact. The impact test conducted at three different energy levels as 20 J, 25 J and 30 J. Effect of impact on these pipes were measured by the comparison of energy absorption, force and deformation values. The results shows that increasing thickness of specimens increase maximum load carrying capacity and reduces the energy absorption and deformation of impacted specimens


2011 ◽  
Vol 471-472 ◽  
pp. 646-651 ◽  
Author(s):  
A. Freeda Amir ◽  
A.R. Othman

This paper presented the effect of constituent materials on impact damage and strength reduction of sandwich structure, composed of laminated woven E-glass facesheets and polypropylene thermoplastic honeycomb core. Effect of low-velocity impact was the main interest in a variety of layered configurations. Compression after impact (CAI) has been carried out to determine the residual strength of impacted sandwich structures. Three different thicknesses of core of 20, 40 and 60mm subjected to three different levels of impact energy of 15, 30 and 45J were investigated. Impact response of the panel was recorded and analyzed in terms of peak load, indentation, energy absorbed and time. A profile analysis using optical 3D surfaces profiler was carried out to attain the indentation depth and damage area of the samples. The tested samples were then sectioned into halves to capture the failure mode or damaged sequence of the polypropylene thermoplastic honeycomb core. The dominant failure modes of the core indicated that polypropylene thermoplastic honeycomb core is a high strength material which can absorb higher impact energy and retain a higher degree of structural integrity.


2021 ◽  
Author(s):  
Karmanya Ratra

Carbon fiber bicycle wheels were tested under low velocity impact to monitor the damage evolution of the impact event. A wheel model designed by KQS Inc. (industrial partner) with eight different configurations, including spoke tension, number of spokes, and location of impact on the rim were investigated. IR thermography combined with PCA was used to monitor the damage during impact. Results showed that wheels in line with spokes had 16% higher impact energy absorption compared to those impacted in between spokes on average (58.9 J vs 70.2 J). The 20 spoked wheels had a slightly higher (6%) impact energy absorption than the 24 spoked wheels. The added stiffness due to the extra spokes reduced the impact energy absorption of rim. Wheels with higher spoke tension also had slightly improved impact energy absorption (4%). The test protocol established in this study provides a good understanding of the wheel’s impact damage evolution.


2021 ◽  
pp. 002199832110050
Author(s):  
Ilaria Papa ◽  
Antonio Formisano ◽  
Valentina Lopresto ◽  
Pietro Russo

The paper deals with the mechanical degradation of composite material components in seawater at room temperature. In particular, this study compares quasi-static and dynamic behaviour of carbon fiber/vinyl ester components, dry and water saturated in a saline environment at 3% to simulate the seawater exposition. At this regard, short-beam shear, flexural and low-velocity impact tests were systematically performed before and after the conditioning of the material under examination. Finally, the damage of the impacted specimens was carefully analyzed by visual inspections and ultrasound investigations. Despite a very low water absorption, the analyses allow to highlight different phenomena, reflecting on variations in the mechanical properties and in the extent of the damage of the investigated samples.


Sign in / Sign up

Export Citation Format

Share Document