scholarly journals Influence of Cold Spray Nozzle Displacement Strategy on Microstructure and Mechanical Properties of Cu/SiC Composites Coating

2019 ◽  
Vol 813 ◽  
pp. 110-115
Author(s):  
Olga Matts ◽  
Hussein Hammoud ◽  
Alexey Sova ◽  
Zineb Bensaid ◽  
Guillaume Kermouche ◽  
...  

In this work an influence of cold spray nozzle displacement parameters on the properties of copper-silicon carbide cold spray deposits is considered. In particular the influence of nozzle traverse speed and distance between deposited tracks on the coating porosity and behavior during compressive tests was analyzed. It was shown that cold spraying at low nozzle traverse speed leads to formation of thick tracks with quasi-triangular cross-section. As a consequence, the particle impact angle on the sides of spraying track increases that. Thus, the particle deformation at impact on the track periphery becomes insufficient and local porosity value rises. Increase of nozzle traverse speed allows increasing coating density and mechanical properties due to amelioration of particle deformation conditions. Compressive tests revealed significant anisotropy of mechanical properties of copper-silicon carbide cold spray deposits. In particular, compressive strength measured in vertical direction (perpendicular to the substrate) was significantly higher than one measured in horizontal plane (parallel to substrate). This anisotropy could be explained by the orientation of particle deformation pattern during impact.

Author(s):  
Florentina-Luiza Zavalan ◽  
Aldo Rona

Abstract The generation of a high velocity carrier gas flow for cold metal particle applications is addressed; with specific focus on titanium cold spraying. The high hardness of this material makes cold spraying titanium difficult to achieve by industry standard nozzles. The redesign of a commercial conical convergent-divergent cold spray nozzle is achieved by the application of aerospace design codes; based on the Method of Characteristics; towards producing a more isentropic expansion by contouring the nozzle walls. Steady threedimensional RANS SST k-ω simulations of nitrogen are coupled two-way to particle parcel tracking in the Lagrangian frame of reference. The new contoured nozzle is found to produce higher particle velocities with greater radial spread; when operated at the same conditions/cost of operation as the commercial nozzle. These numerical results have shown the potential for extending cold spray to high density and low ductility particles by relatively minor rig modifications; through an effective synergy between gas dynamics and material science.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 348 ◽  
Author(s):  
Heli Koivuluoto ◽  
Jussi Larjo ◽  
Danilo Marini ◽  
Giovanni Pulci ◽  
Francesco Marra

Process optimization and quality control are important issues in cold spraying and coating development. Because the cold spray processing is based on high kinetic energy by high particle velocities, online spray monitoring of particle inflight properties can be used as an assisting process tool. Particle velocities, their positions in the spray jet, and particle size measurements give valuable information about spraying conditions. This, in turn, improves reproducibility and reliability of coating production. This study focuses on cold spraying of Al6061 material and the connections between particle inflight properties and coating characteristics such as structures and mechanical properties. Furthermore, novel 2D velocity scan maps done with the HW CS2 online spray monitoring system are presented as an advantageous powder and spray condition controlling tool. Cold spray processing conditions were similar using different process parameters, confirmed with the online spray monitoring prior to coating production. Higher particle velocities led to higher particle deformation and thus, higher coating quality, denser structures, and improved adhesions. Also, deposition efficiency increased significantly by using higher particle velocities.


2021 ◽  
Vol 8 (1) ◽  
pp. F19-F24
Author(s):  
W.J. Hu ◽  
K. Tan ◽  
S. Markovych ◽  
X.L. Liu

Cold spray technology can obtain coatings in a solid state, suitable for deposition protection, repair, and additive manufacturing. In order to further expand the application areas of cold spraying nozzles, especially the inner surface of the components or areas where a Straight-line conical nozzle cannot be applied, because the study of the throat of the nozzle with the angle will directly reduce the total length of the nozzle (the horizontal direction), hence, the spray with the angle will show its advantage. This study discusses the influence of the throat structure of the conical cold spray nozzle on the acceleration characteristics, including the throat’s size, length, and angle. The results show the following. Firstly, under the premise of keeping the shrinkage ratio and divergence ratio unchanged at normal temperature, the throat diameter is between 2–6 mm in size, and the maximum growth rate exceeds 20 m/s. When the throat exceeds 6mm, the growth rate of the outlet slows down, and the growth rate is only 8 m/s. Secondly, the length of the throat has little effect on the acceleration characteristics, the total range fluctuated from 533 to 550 m/s, and 11 mm length of the throat is the closest to 0mm. Additionally, the 90° throat angle has the least effect on the acceleration characteristics. Finally, the particle trajectory is affected by inlet pressure, injection pressure, particle size, and other factors.


2021 ◽  
pp. 47-59
Author(s):  
Kun Tan ◽  
Sergii Markovych ◽  
Wenjie Hu ◽  
Oleksandr Shorinov ◽  
Yurong Wang

Cold spray technology is an advanced spray technology, and its technical principle is the same as that of additive manufacturing technology. Cold spraying technology combines multiple advantages in the spraying field: not only can the deposition of thick coatings be achieved, but the coatings prepared by this technology have the characteristics of high density, low oxygen content, good mechanical properties of the coating surface, and high deposition efficiency. Cold spraying technology can prepare corrosion-resistant coatings, high-temperature resistant coatings, wear-resistant coatings, conductive coatings, anti-oxidation coatings, and other functional coatings. After decades of development and exploration, cold spraying technology is preparing metal coatings. The application is very wide and the process is mature; the same cold spray technology can also prepare non-metallic coatings. Mainly to immerse repair and protect the surface of metal alloy parts and a small part of non-metal parts, so that these parts have better mechanical properties and mechanical behavior. This article mainly reviews the application of cold spray technology in the field of spray materials and summarizes the existing conventional metal series, rare metal series and non-metal material, conventional non-ferrous metals: copper, titanium, aluminum and nickel. Metal materials are currently widely used in the field of cold spraying. Among them, titanium-based metals restrict their applications due to their own properties; rare metals: tungsten, tantalum, and niobium-based metal materials. The application of rare metals in cold spraying is still in its infancy stage; non-metallic materials: polymer materials and ceramic powder materials, non-metallic materials have the characteristics of surface modification and strengthening technology, but also have low oxygen content, low thermal stress, high density, good bonding strength, in the deposition process and the substrate will not change the advantages of physical organization structure. Finally, the existing problems of rare metal materials and non-metal materials are raised.


2020 ◽  
pp. 53-70
Author(s):  
Kun Tan ◽  
Sergii Markovych ◽  
Wenjie Hu ◽  
Oleksandr Shorinov ◽  
Yurong Wang

Cold spray technology is a method of deposited metal coatings by high-speed particle impact, especially in the preparation of metal alloy materials (Cu alloys, Ti alloys, Al alloys, Ni-based alloys, Mg alloys, stainless steels, and high-temperature alloys, etc.) The performance is particularly outstanding. The sprayed materials have better mechanical properties, mechanical properties, and service life, such as tensile strength, fatigue strength, and corrosion resistance. Cold spray technology can prepare corrosion-resistant coatings and high-temperature coatings, Wear-resistant coatings, conductive coatings, and anti-oxidation coatings and other functional coatings. From the perspective of process technology and equipment design, cold spray technology can be applied to the field of additive manufacturing technology, which not only reflects the repair function but also the manufacturing function, and applies cold spray technology and repairs the parts produced by additive manufacturing – Selective Laser Melting technology. The defects and problems are of great significance. This article summarizes the repair process and technical characteristics of cold spray technology, and repairs and protects the Cu, Ti, Al, Ni, Mg, and stainless steel and other metals and their alloys from corrosion, fatigue, and wear. The maintenance is reviewed, and the application of combining cold spray technology with additive manufacturing – Selective Laser Melting technology is proposed. Many materials can be used in the field of cold spray technology and Additive Manufacturing – Selective Laser Melting technology. In the communication between the two, the combination of technology and method is of great significance; the influence of spraying parameters of cold spraying technology (such as powder particle shape, spraying angle, spraying distance, critical speed and temperature of particles and substrate, etc.) on spraying effect and efficiency are proposed. Finally, the development of cold spray technology: post-processing of parts, critical speed and numerical simulation are possible.


2012 ◽  
Vol 27 (9) ◽  
pp. 965-969
Author(s):  
Xiao YANG ◽  
Xue-Jian LIU ◽  
Zheng-Ren HUANG ◽  
Gui-Ling LIU ◽  
Xiu-Min YAO

2015 ◽  
Vol 787 ◽  
pp. 568-572 ◽  
Author(s):  
A. Radha ◽  
K.R. Vijayakumar

Composite materials like Aluminium metal matrix composite is playing a very important role in manufacturing industries e.g. automobile and aerospace industries, due to their superior properties such as light weight, low density, high specific modulus, high fatigue strength etc., In this study Aluminium(Al 6061) is reinforced with Silicon Carbide particles and fabricated by Stir Casting Technique (vortex method). The MMC rectangular bars (samples) are prepared with Al6061 and SiC (28 µ size) as the reinforced particles by weight fraction from 0%, 5%, 10%, and 15% of SiC. The microstructure analysis and Mechanical properties like Tensile Strength, Vickers Hardness and Charpy Impact Strength were investigated on prepared specimens. It is observed that the properties are increased with increasing of reinforced specimens by weight fraction.


Sign in / Sign up

Export Citation Format

Share Document