The Study on Impact Resistance of Metal Rubber for a Product

2019 ◽  
Vol 821 ◽  
pp. 125-130 ◽  
Author(s):  
Fu Wei Duan ◽  
Yuan Tao ◽  
Cheng Bin Ding

A metal rubber damper was designed for the too large impact response of a product. The impact response of products which bears big shocks with and without metal rubber damper were studied and compared. The damping performance of the metal rubber damper with different pre-compression was tested and studied. The test results show that the metal rubber damper can effectively reduce the impact response of the product in three directions; The damping effect of cylindrical metal rubber damper in the direction of cylinder axis is better than that in the other two axial directions; different pre-compression amounts have great influence on the impact response, so the optimum damping effect is obtained by adjusting the pre-compression amount of the metal rubber damper.

2012 ◽  
Vol 542-543 ◽  
pp. 727-730
Author(s):  
Chuan Zhi Mei ◽  
Lin Hua Piao ◽  
Quan Gang Yu ◽  
Bao Li Zhang ◽  
Xia Ding ◽  
...  

This paper reports about a nozzle array structure fluidic gyroscope. The gyro used setting sub-nozzle around the main nozzle to inhibit the attenuation which had been caused by the main nozzle jet column spread out and to increase the angular velocity difference of sensitive element in the thermal resistance wire when the jet flow rate had been input, thereby to improve the performance of the jet gyro. The test results showed that: a resolution of better than 0.1°/s nozzle formation jet gyro sensitivity better than 10mv/(0.1°/s), the measurement range is better than ± 60°/s; non-linearity of better than 1%.The impact of the gyroscope impact resistance capability, small size and wide range of applications.


2012 ◽  
Vol 586 ◽  
pp. 117-120
Author(s):  
Wei Ting Lin ◽  
Ta Yuan Han ◽  
Yuan Cheih Wu ◽  
Chin Cheng Huang

This study is aimed to evaluate the impact performance of cement-based composites which comprise steel fibers and silica fume in the mixes. Material variables include water-cementitious ratio, dosage of silica fume, steel fiber length and dosage. Test results indicate that the impact resistance increase with increasing fiber content and water-cementitious ratio, and with decreasing silica fume content. For a given volume fraction, short fiber performs better than its long counterpart in improving the impact performance. In addition, the combination of silica fume and fibers enhances better impact behavior than individual constituents of silica fume, due to reduced the crack formation and offer the toughness of cement-based composites under impact loadings.


Author(s):  
Meivazhisalai Parasuraman Salaimanimagudam ◽  
Covaty Ravi Suribabu ◽  
Gunasekaran Murali ◽  
Sallal R. Abid

Reducing the weight of concrete beams is a primary (beyond strength and durability) concern of engineers. Therefore, this research was directed to investigate the impact response of hammerhead pier concrete beams designed with density-based method topology optimization. The finite element topology optimization was conducted using Autodesk fusion 360 considering three different mesh sizes of 7 mm, 10 mm, and adaptive meshing. Three optimized hammerhead beam configurations; HB1, HB2, and HB3, respectively, with volume reductions greater than 50 %. In the experimental part of this research, nine beams were cast with identical size and configuration to the optimized beams. Three beams, identical to the optimized beams, were tested under static bending for verification purposes. In comparison, six more beams, as in the preceding three beams but without and with hooked end steel fibers, were tested under repeated impact load. The test results revealed that the highest flexural capacity and impact resistance at crack initiation and failure were recorded for the adaptive mesh beams (HB3 and HB3SF). The failure impact energy and ductility ratio of the beam HB3SF was higher than the beams HB1SF and HB2SF by more than 270 %. The results showed that the inclusion of steel fiber duplicated the optimized beam’s impact strength and ductility several times. The failure impact resistance of fibrous beams was higher than their corresponding plain beams by approximately 2300 to4460 %, while their impact ductility ratios were higher by 6.0 to 18.1 times.


2018 ◽  
Vol 163 ◽  
pp. 08004 ◽  
Author(s):  
Ewa Sudoł ◽  
Dawid Dębski ◽  
Renata Zamorowska ◽  
Barbara Francke

In the paper the results of an experimental program intended to determine factors influencing the impact resistance of the External Thermal Insulation Composite Systems (ETICS) were presented. For the research the systems based on polystyrene have been chosen. The insulation material was faced with a rendering consisting of base coat reinforced with standard or armored glass fibre mesh and silicone or silicone-silicate binders as finishing coats. The influence of various renderings components was evaluated with respect to resistance to hard body impact and resistance to hail. The test results were discussed in the context of the possible impact level on ETICS in use.


2013 ◽  
Vol 639-640 ◽  
pp. 325-328
Author(s):  
Yan Jia Guo ◽  
Zhu Li ◽  
Yuan Zhen Liu ◽  
Shang Song Qin

Based on the compressive strength, the thermal conductivity, the elastic modulus and the steel bond strength of thermal insulation glazed hollow bead concrete, referring to the carbonation mechanism and the influence factors of the ordinary concrete, considering the impact of raw materials and the influence of construction technology, the study on thermal insulation glazed hollow bead concrete anti-carbonation was proposed. From the test results, it can conclude that for the same intensity level, the anti-carbonation capacity of the thermal insulation glazed hollow bead concrete is better than that of the ordinary concrete. For different strength grade of thermal insulation glazed hollow bead concrete, to some extend, the higher the intensity level is, the stronger the ability of thermal insulation glazed hollow bead concrete anti-carbonation is.


2018 ◽  
Vol 183 ◽  
pp. 02040
Author(s):  
KarthikRam Ramakrishnan ◽  
Mikko Hokka ◽  
Essi Sarlin ◽  
Mikko Kanerva ◽  
Reijo Kouhia ◽  
...  

Recent developments in the production of technical flax fabrics allow the use of sustainable natural fibres to replace synthetic fibres in the manufacture of structural composite parts. Natural fibre reinforced biocomposites have been proven to satisfy design and structural integrity requirements but impact strength has been identified as one of their limitations. In this paper, hybridisation of the biocomposite with a metal layer has been investigated as a potential method to improve the impact resistance of natural fibre composites. The impact response of biocomposites made of flax-epoxy is investigated experimentally using a high velocity particle impactor. A high-speed camera setup was used to observe the rear surface of the plates during impact. Digital Image Correlation (DIC) of the high speed camera images was used for full-field strain measurement and to study the initiation and propagation of damage during the impact. The different modes of damage in the hybrid laminate were identified by postimpact analysis of the section of the damaged composite plate using optical microscopy. The study shows the difference in impact response for different material combinations and configurations. The hybrid construction was shown to improve the impact resistance of the flax composite.


2016 ◽  
Vol 20 (5) ◽  
pp. 531-552 ◽  
Author(s):  
Longquan Liu ◽  
Han Feng ◽  
Huaqing Tang ◽  
Zhongwei Guan

In order to investigate the impact resistance of the Nomex honeycomb sandwich structures skinned with thin fibre reinforced woven fabric composites, both drop-weight experimental work and meso-mechanical finite element modelling were conducted and the corresponding output was compared. Drop-weight impact tests with different impact parameters, including impact energy, impactor mass and facesheets, were carried out on Nomex honeycomb-cored sandwich structures. It was found that the impact resistance and the penetration depth of the Nomex honeycomb sandwich structures were significantly influenced by the impact energy. However, for impact energies that cause full perforation, the impact resistance is characterized with almost the same initial stiffness and peak force. The impactor mass has little influence on the impact response and the perforation force is primarily dependent on the thickness of the facesheet, which generally varies linearly with it. In the numerical simulation, a comprehensive finite element model was developed which considers all the constituent materials of the Nomex honeycomb, i.e. aramid paper, phenolic resin, and the micro-structure of the honeycomb wall. The model was validated against the corresponding experimental results and then further applied to study the effects of various impact angles on the response of the honeycomb. It was found that both the impact resistance and the perforation depth are significantly influenced by the impact angle. The former increases with the obliquity, while the latter decreases with it. The orientation of the Nomex core has little effect on the impact response, while the angle between the impact direction and the fibre direction of the facesheets has a great influence on the impact response.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4957
Author(s):  
Xiuyun Zhu ◽  
Jianbo Li ◽  
Gao Lin ◽  
Rong Pan ◽  
Liang Li

This paper aimed at evaluating the influence of different site conditions on the impact response of the structure of nuclear power plants (NPPs) against a large commercial aircraft. The lumped parameter site dynamic model recommended by the code of ASCE 4-98 was used to consider the different homogeneous sites. With respect to the excellent impact resistant performance of steel-plate concrete (SC) structure, the full SC containment is selected as the research object. The impact analysis of the full SC containment against a large commercial aircraft under different site conditions was carried out, based on the force time-history analysis method. The numerical results in terms of the displacement, plastic strain, local concrete damage, and different values of energy were evaluated. The results showed that: (1) For the relatively thin full SC containment, the impact response under the fixed boundary is the largest, while that calculated by other, different sites varies greatly, and there is no consistent rule, the boundary condition which is assumed to be fixed is relatively conservative. (2) For the thicker full SC containment, the displacement response decreased with the increasing of the site shear wave velocity, which is the smallest when the fixed boundary is considered. When the shear wave velocity of the site is large enough, its boundary condition which is assumed to be the fixed constraint is reasonable. (3) For the relatively thin full SC containment, the site damping effect has a significant effect on the structural impact response. Nevertheless, the impact response of the thicker containment is slightly influenced by the site damping effect. (4) For the impact analysis of the structures of NPPs against a large commercial aircraft, it is suggested that both the specific site condition and fixed boundary should be considered.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yue Wang ◽  
Jun Liu ◽  
Zhimin Xiao ◽  
Futian Zhao ◽  
Yi Cheng

Reinforced concrete (RC) slab is an important component in civil construction and protection engineering, and its dynamic response under impact loading is a complex mechanical problem, especially for two or multiple continuous impact loads. In this paper, a series of drop hammer impact tests were carried out to investigate the dynamic response of RC slabs with two successive impacts. The time history of impact force and the failure characteristic of the slab surface were recorded. Moreover, four influence factors, including slab thickness, reinforcement ratio, impact location, and drop hammer height have been discussed. Besides, a 3D numerical model based on the finite element method (FEM) was established to expand the research of constrained force, deflection, and vertical stress of an RC slab. The results show that increasing the slab thickness and reinforcement ratio can improve the impact resistance of an RC slab. The impact point location and drop hammer height have a great influence on the dynamic response of the RC slab. In addition, the RC slab will have more obvious damage under the second impact, but the dynamic response becomes weaker. It may be because of the local damage in the concrete caused by the first impact that would weaken the propagation of vibration.


2020 ◽  
Vol 27 ◽  
pp. 37-41
Author(s):  
Josef Daniel ◽  
Jan Grossman ◽  
Vilma Buršíková ◽  
Lukáš Zábranský ◽  
Pavel Souček ◽  
...  

Coated components used in industry are often exposed to repetitive dynamic impact load. The dynamic impact test is a suitable method for the study of thin protective coatings under such conditions. Aim of this paper is to describe the method of dynamic impact testing and the novel concepts of evaluation of the impact test results, such as the impact resistance and the impact deformation rate. All of the presented results were obtained by testing two W-B-C coatings with different C/W ratio. Different impact test results are discussed with respect to the coatings microstructure, the chemical and phase composition, and the mechanical properties. It is shown that coating adhesion to the HSS substrate played a crucial role in the coatings’ impact lifetime.


Sign in / Sign up

Export Citation Format

Share Document