Influence of Magnetite Dispersion on Tensile Properties

2019 ◽  
Vol 827 ◽  
pp. 190-195
Author(s):  
Kazuto Tanaka ◽  
Yuta Ishii ◽  
Tsutao Katayama

Nanofibers have high cell affinity due to their fine structure and surface roughness, and are expected to be used as biomaterials. In particular, magnetic nanofibers containing magnetic particles are expected to be used for magnetically induced drug delivery systems and hyperthermia. However, due to the aggregation of the magnetic particles contained in the nanofibers, there is a problem that the aggregation location becomes a starting point of fracture and causes a decrease in tensile strength. In this study, to improve the dispersibility of magnetic particles in Magnetite/PLA nanofiber nonwoven fabrics for suppressing the decrease in tensile strength, magnetite is subjected to surface treatment with oleic acid or stearic acid and ultrasonic agitation. Magnetite/PLA nanofiber nonwoven fabric was prepared by the electrospinning method, and dispersion of magnetite in PLA nanofiber nonwoven fabric and tensile strength were evaluated. Magnetite dispersion was improved by the surface treatment and increasing the ultrasonic agitation time. In particular, by performing the stearic acid treatment and prolonging the ultrasonic agitation time, the magnetite dispersion tended to be improved. This treated Magnetite/PLA nanofiber nonwoven fabric showed higher tensile strength.

2013 ◽  
Vol 8 (4) ◽  
pp. 155892501300800 ◽  
Author(s):  
Hong Wang ◽  
Jingjing Zhu ◽  
Xiangyu Jin ◽  
Haibo Wu

Spunlaced nonwoven fabrics have been widely used recently, but fundamental research on the spunlaced nonwoven process is relatively weak. It is inexplicit until now how fibers are entangled with each other during the hydroentangling process. In this paper, a pull-out experiment designed to study the entanglement properties of spunlaced nonwoven fabrics using common and hydrophilic PET fibers as objects is described. It was found that the broken fiber content can be used to represent the entanglement intensity of the spunlaced nonwoven fabrics. In addition, a formula was set up to calculate the tensile strength of the spunlaced nonwoven fabric based on its pull-out behavior.


2013 ◽  
Vol 365-366 ◽  
pp. 1165-1168
Author(s):  
Jia Horng Lin ◽  
Ya Lan Hsing ◽  
Wen Hao Hsing ◽  
Jin Mao Chen ◽  
Ching Wen Lou

Heat energy plays a significant role in resources and industries, which makes the development of energy-saving and thermal retention materials important to environment protection. This study combines three-dimensional hollow Polyethylene Terephthalate (TPET) fibers, recycled far-infrared polyethylene terephthalate (RFPET) fibers, and low melting temperature polyethylene terephthalate (LPET) fibers at various ratios to make the RFPET/TPET hybrid nonwoven fabric. The tensile strength, tearing strength, air permeability, and far infrared emissivity of the fabrics are evaluated. With a blending ratio of 8:0:2, the hybrid nonwoven fabrics have the optimum tensile strength of 145 N, tear strength of 184 N, and air permeability of 205 cm3/cm2/s.


2018 ◽  
Vol 940 ◽  
pp. 8-14
Author(s):  
Kazuto Tanaka ◽  
Ryota Kawasaki ◽  
Tsutao Katayama ◽  
Yusuke Morita

Insufficient endothelialization of stent grafts tends to cause a problem of thrombosis formation. Because the structure of nanofibers, generally defined as fibers with a diameter below 1 μm, resembles the structure of an extracellular matrix, nanofibers are applied to scaffolds for regenerative medicine. Using nanofibers as the covering material of the stent graft can be expected to solve the problem of the stent graft. Previous studies have shown that a porous scaffold offers better surfaces to anchor and culture endothelial cells than a nonporous scaffold. Therefore, fibers with nanoorder dimples are expected to promote endothelialization. As a method of forming the dimple shape on the surface of the PET fiber, there is a method utilizing a difference in the volatilization rate of the solvent in the high humidity environment in the electrospinning method. For practical application of the stent graft to artificial blood vessels, the mechanical properties of the dimpled PET fiber should be clarified. In this study, the mechanical properties of single nanofibers and nonwoven fabrics of PET fibers with dimples on their surface were evaluated by tensile test. By forming the dimple shape on the fiber surface, the tensile strength of single PET fibers with dimples was 90 % lower than that of single PET fibers with a smooth surface. In the fabrication process of nonwoven fabric, the addition of EG delayed the volatilization of the PET solution, and the fibers adhered to each other. The bonding between the fibers contributed to the tensile strength of the nonwoven fabric.


2014 ◽  
Vol 910 ◽  
pp. 174-177 ◽  
Author(s):  
Ching Wen Lou ◽  
Shih Yu Huang ◽  
Jia Horng Lin

Nonwoven fabric technique has been extensively used because nonwoven fabrics can uses both filaments and staple fibers and have ease of processing, a wide range of raw material sources, and a short production. This study makes protective nonwoven fabrics with Kevlar fibers, flame retardant polyester (FPET) fibers, and low-melting-point polyester (LPET) fibers. The number of lamination layers of the nonwoven fabric is varied and examined to determine their influence on the mechanical properties of the protective nonwoven fabrics. The results of test show that tensile strength and bursting strength of the protective nonwoven fabrics increase as a result of the increased number of lamination layer.


2012 ◽  
Vol 554-556 ◽  
pp. 136-139 ◽  
Author(s):  
Chen Hung Huang ◽  
Ting Ting Li ◽  
Yu Chun Chuang ◽  
Ching Wen Lou ◽  
Jin Mao Chen ◽  
...  

As social civilization advances, more and more people reside in the city. Consequently, the number of automobiles and locomotives increases, causing greenhouse effect and noise pollution increasingly serious. Therefore, lowering the temperature and reducing the noise in living conditions has become an urgent task, in order to save resources usage amount and to produce a low-noise dwelling environment. In this study, the sound-absorption and heat-insulation nonwoven fabrics were firstly prepared by three-dimensional crimp hollow polyester fiber (PET) fibers and Polypropylene (PP) fibers based on nonwoven processing technology, following by sound-absorption coefficient test, thermal conductivity test, as well as maximum tensile strength and maximum tearing strength tests. The results show that, 70/30 wt% PET/ PP nonwoven fabrics have the maximum tensile strength of 2.47 MPa (CD) and 1.67 MPa (MD), in addition with the maximum tearing strength of 83.96 kN/m (CD), 111.88 kN/m (MD); the 90/10 wt% PET/ PP nonwoven presents the lowest thermal conductivity coefficient of 0.0365 W/K‧m; nonwoven with three different ratios show the similar sound-absorbing curves, which all reaches the highest absorption coefficient of 0.76 at 4000 Hz.


2012 ◽  
Vol 184-185 ◽  
pp. 1333-1336 ◽  
Author(s):  
Ching Wen Lou ◽  
Chao Tsang Lu ◽  
Yueh Sheng Chen ◽  
Meng Chen Lin ◽  
Ting Ting Li ◽  
...  

Polylactic acid (PLA) is often applicable in biomedical because in environment it degrades into carbon dioxide and water. This study aims to prepare sandwich-structure PLA/ Tencel composite nonwoven, following by its property test for evaluating effect on wound dressing. In this study, PLA fibers, blended with Tencel fibers, were made into nonwoven fabrics based on nonwoven processing technology. After that, their tensile strength, tearing strength and softness were tested for evaluating nonwoven fabric properties. The result displays that, PLA nonwoven fabrics show higher tensile strength and tearing strength than Tencel nonwoven fabrics.


2019 ◽  
Vol 90 (2) ◽  
pp. 166-178 ◽  
Author(s):  
Ji Eun Song ◽  
Artur Cavaco-Paulo ◽  
Carla Silva ◽  
Hye Rim Kim

The present study aimed to improve the properties of bacterial cellulose nonwoven fabrics by physical entrapment of lauryl gallate oligomers. The lauryl gallate oligomerization process was conducted by laccase-mediated oligomerization. Lauryl gallate was chemically confirmed by matrix-assisted laser desorption/ionization with time-of-flight analyses. The oligomerization conditions were controlled considering the surface properties (water contact angle, surface energy, and water absorption time) of bacterial cellulose nonwoven fabrics. The controlled oligomerization conditions were 160 U/mL of laccase and 20 mM lauryl gallate. After bacterial cellulose was treated by the physical entrapment of lauryl gallate oligomers, X-ray photoelectron spectroscopy analysis showed that the N1 atomic composition (%) of bacterial cellulose increased from 0.78% to 4.32%. This indicates that the lauryl gallate oligomer molecules were introduced into the bacterial cellulose nanofiber structure. In addition, the water contact angle was measured after washing the bacterial cellulose nonwoven fabric treated by the physical entrapment of lauryl gallate oligomers for 180 minutes, and it was found to maintain a water contact angle of 88°. The durability of bacterial cellulose nonwoven fabric treated by the physical entrapment of lauryl gallate oligomers was confirmed by measuring the tensile strength after wetting and dimensional stability. As a result, the tensile strength after wetting was about five times higher and the dimensional stability was three times higher than that of untreated bacterial cellulose nonwoven fabric.


Alloy Digest ◽  
1979 ◽  
Vol 28 (9) ◽  

Abstract CENTRI-CAST GRAY IRON 55 is a centrifugally cast gray iron with a nominal tensile strength of 55,000 psi. It is produced in the form of tubing which has a wide range of uses in applications where size and shape are of paramount importance and freedom from pattern cost is an important consideration. Typical applications are seals, bushings, farm machinery, casings and general machinery uses. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on casting, heat treating, machining, and surface treatment. Filing Code: CI-48. Producer or source: Federal Bronze Products Inc..


Alloy Digest ◽  
2010 ◽  
Vol 59 (12) ◽  

Abstract Dogal 600 and 800 DP are high-strength steels with a microstructure that contains ferrite, which is soft and formable, and martensite, which is hard and contributes to the strength of the steel. The designation relates to the lowest tensile strength. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on forming, joining, and surface treatment. Filing Code: CS-160. Producer or source: SSAB Swedish Steel Inc. and SSAB Swedish Steel.


Alloy Digest ◽  
1968 ◽  
Vol 17 (12) ◽  

Abstract Brush Alloy 190 is a mill-heat treated beryllium copper strip with a tensile strength up to 190,000 psi. It eliminates the need of customer heat-treating by providing high properties combined with exceptional formability. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, joining, and surface treatment. Filing Code: Cu-194. Producer or source: Brush Beryllium Company.


Sign in / Sign up

Export Citation Format

Share Document